
// Scientific News of NTUU "KPI".—K.: 2008, N 35.—P.123-129. 
 

УДК 004.75, 004.724.2 

THE POSSIBILITY OF REPORTED TRAFFIC FORGERY ON PRIVATE 

BITTORRENT TRACKERS 

 

Poryev G.V., Poryev V.A., National Technical University of Ukraine “KPI”, Kiev, Ukraine 

 
The overview of the development of concept 

of peer-to-peer networks is given while 

historical trends of its progress are analyzed. 

The content’s lifecycle and load-balancing 

techniques in BitTorrent networks are 

reviewed. It is shown that the traffic reports on 

private trackers could easily be forged. 

 

Introduction 

The concept of peer-to-peer networks, not nearly new at the beginning of XXI 

century, was briefly outlined in the times of Internet very inception back in 1969. 

Although the contributors in ARPA could not possibly have predicted the future scale 

of worldwide distribution of what was then a single link between just two mainframe 

computers, the idea of interconnected peer nodes was already there. 

It should be noted though, user interface terminals at the time were nowhere 

near to compare with host computers (mainframes), and were essentially lacking any 

computing and storage facilities whatsoever, hence the vision of peering networks 

remained dormant for long time since. 

Only as the mainstream computers surged into the consumer market during 

1970s and 1980s, the legacy of what we know today as ―client-server architecture‖ 

was to be dominant for decades to come. It was assumed that should there be a 

network, it is naturally divided into servers (that provide access to resources) and 

clients (that make use of provided resources). The performance and capacity gap 

between server and client hardware and, which is more important, a difference 

between network interconnections was still too obvious. 

At that time, peering was common practice when dealing with server software 

and network architecture. TCP/IP routing schemes was essentially peering to the 

point that the very word ―peering‖ made it into the specific technical term on 

internetworking routing, despite the fact that actual physical channels had (and still 

have) visible relevance to national backbones and traffic exchange points, making 

them more or less subordinate to each other. However, Usenet and e-mail servers 

were communicating with each other and there were no such thing as primary layer 

or central hub(s) through which all traffic should be passed — which is peering 

network. 

Outside of Internet, attempts to build peering networks were also undertaken. 

One of the most successful of those attempts was FidoNet — amateur worldwide 

computer network, initially consisting of independent bulleting board systems (BBS), 



built on packet-switching principle over regular telephone lines using dialup modems. 

Unlike Internet, FidoNet is not online-network and all user interaction could be and 

mostly done in offline state. Host software, however, is required to maintain online 

availability during the certain policy-defined hours each day. 

Right upon emerging, the FidoNet was truly peering, in the sense that each 

originating node accessed its addressee directly by calling its address (phone numbers 

in this case). Later in 1990-x, however, FidoNet had also ―suffered‖ from 

infrastructure growth, when the network had exploded into thousands of nodes 

worldwide. These times of FidoNet development were marked with strict hierarchical 

structure, roughly based on geography and various regulating authorities within the 

network. It is worth noting, that unlike Internet (IPv4 address space making up 2
32

 

addresses, including non-routable and reserved), hierarchical address structure of 

FidoNet theoretically allowed address space of 2
48

 network nodes alone and 2
64

 

connection points in total. 

Despite all aforementioned advances and peeks into the future concept, truly 

peer-to-peer online networks as we understand them today were far from reach before 

the advent of third millennium. 

The commercial grounds for real peer-to-peer networks have appeared not until 

permanent Internet connections (also called then ―leased lines‖) built on technologies 

such as ADSL or DOCSIS gained significant consumer market at homes and offices. 

In addition, not until average home and office computer hardware was closing to the 

average server hardware (often being built from the same parts indeed) was it 

plausible to build peer-to-peer networks with evenly distributed computing and 

storage resources [1]. 

It is widely believed, that commercial applications of the concept started to 

appear and gained much popularity in the beginning of XXI century. 

Overview of BitTorrent 

One of the modern peer-to-peer network protocols, BitTorrent, was conceived 

in 2001 and to date remains responsible for largest part of consumer-generated 

Internet traffic, sometimes prompting Internet Service Providers (ISPs) to implement 

special, often unpopular, filtering measures and devices. 

Unlike other popular peer-to-peer networks such as eDonkey2000 or Gnutella 

networks, BitTorrent does not constitute a single addressing or naming space. It is not 

even a network itself, because BitTorrent operates as multitude of independent 

content-tracking servers, called ―trackers‖. Each tracker maintains the list of 

published content entities, and for each entity, it maintains the list of peers associated 

with it. Most trackers do not communicate with each other, as eDonkey2000 servers 

do, unless they are sharing same content and are specially designed to exchange 

information among themselves. 

Due to the absence of overhead related to maintaining global naming or 

addressing space, BitTorrent networks are quite faster in comparison with 

eDonkey2000 or Gnutella in terms of download and upload speed and length of 

download queues. BitTorrent clients are most likely to consume their bandwidth to 



exhaustion, despite the fact that BitTorrent does not imply sophisticated load-

balancing algorithms for upload, reward scores and so on [2]. 

Typical content lifecycle in BitTorrent could be described as the following: 

1. Preparation — content publisher prepares torrent file, which describes the 

number, names and size of files and the control checksums of each slice of 

binary stream made up from content files. 

2. Publication — publisher uploads torrent file in such a way that tracker became 

aware of its existence, not necessarily knowing all the details specified in the 

torrent file. 

3. Distribution — publisher distributes torrent file among clients who wish to 

download its content. It is usually done through web-based forums, either 

public or private or via other means. It is worth noting that publication and 

distribution is not the same process, although in most cases they are done 

simultaneously in the scope of one server. For example, uploading torrent file 

as file attach to the message on forum automatically registers torrent contents 

in the tracker. 

4. Initial seeding — publisher running BitTorrent-compliant client starts 

accepting incoming requests for content. 

5. Leeching — other clients proceed to download published torrent file, 

requesting tracker for the address of initial seeder and requesting initial seeder 

for content. 

6. Downloading — clients actively downloading content file will enable already 

downloaded slices to be shared among other clients, effectively speeding up 

the transfer for them. 

7. Secondary seeding — clients that completed the download, engage in seeding 

it by themselves. 

8. End of interest — all involved clients finishes and became seeders, and no 

downloading clients are left in the swarm. 

9. Fadeout — seeders stop seeding one by one, and eventually there are neither 

seeders nor downloading clients associated with this torrent. 

Once the content entity is fully downloaded (the transition between stage 6 and 

7), the BitTorrent client must ascertain the data integrity of it. In this part BitTorrent 

specification seems to be slightly under-developed in comparison with its 

counterparts of eDonkey2000 and Gnutella networks. While the latter does use 

sophisticated tree-hashing algorithms designed to minimize traffic overhead, 

BitTorrent simply calculates hashing stream from binary stream with variable-sized 

chunks. If an error is detected, the whole chunk needs to be re-downloaded. 

Analysis of Load-Balancing technique 

Most peer-to-peer network will eventually encounter the phenomenon called 

―leeching‖. The network client involving in leeching will only download content and 

not share it among others. Although such behavior is necessary for some time just 

after initial publication of the content (since some time is required to download at 

least one complete shareable piece of data), leeching beyond necessary period and for 



long time is considered bad, because it forces excess resource usage on other clients 

interested in the same content [3]. 

Peer-to-peer networks often employ various sophisticated algorithms to 

discourage leeching. 

One of prominent example is the credit reward system found on popular 

eDonkey2000 clients. Such clients maintain a ―performance record‖ for each 

incoming client, who expressed interest in published content. 

Typically, incoming clients are arranged into queue in order of time of their 

appearance. The foremost client in queue is served by the content piece and then 

rescheduled at the end of queue, therefore advancing other queue members. 

However, incoming client can advance queue member by more than single step 

in the queue, taking into account its contribution (in case the sharing client is not 

completed seeder, of course). That is, the more content pieces were provided by the 

incoming client, the faster it progresses in the queue. This effectively places ―bad‖ 

leechers to the end of queue and slows their advance. 

Unfortunately, no such reward system is currently employed by the majority of 

the BitTorrent clients. There are number of reasons for it, including the 

aforementioned difference in distribution speed (BitTorrent content usually 

distributes faster than comparable eDonkey2000 counterpart due to small size of 

swarm). However, similar scheme are designed in so called ―private trackers‖. 

As BitTorrent is developing technology, new protocol extensions are 

constantly added to improve the overall efficiency of content sharing. These include, 

for example, so-called ―Fast Peer Extensions‖ to allow new peers bootstrap into 

swarm more rapidly. Although it is uncertain whether the performance itself is nearly 

topping its potential for the current BitTorrent development stage, it is beyond the 

scope of this paper. 

Public vs. Private Trackers 

Roughly, trackers can be called ―public‖ or ―private‖. Public tracker, such as 

famous Sweden-based ThePirateBay usually does not require invitation or 

registration to be able to download its advertised content, therefore do not maintain 

download and upload rating records of its users. 

In contrary, private trackers, such as Torrents.Ru, do implement some 

restrictions against anonymous access. This is possible using so-called private keys 

— special passwords attached to the announce URL of tracker, designed so that 

tracker could ascertain the user identity of every announce or update request coming 

from BitTorrent clients. 

Private trackers often employ rating system, where rating is a value calculated 

using various formulas including overall download and overall upload amount of a 

particular user. Users with low rating are restricted from further downloading or they 

are potential candidates to be banned from tracker. Users with high rating have 

certain privileges such as ability to download more torrents simultaneously, priority 

to access and search across tracker, etc. 



Hence in order to encourage content sharing and discourage leeching, tracker 

server must somehow be made aware of how much some particular BitTorrent client 

did download and upload to others. This is currently made by issuing special HTTP 

request (―tracker updates‖) to the tracker. Such requests usually contain user identity, 

content identity (hash), client activity state, amount of downloaded and uploaded data 

and other relevant information [4]. 

Analysis of Tracker Update requests 

Since BitTorrent specification is open to the public community, it is known 

that any part of mentioned information request could be forged or faked, and 

therefore used to ―illegally‖ boost the user rating. However, because this would 

require significant level of software engineering knowledge, the fact is not widely 

known. 

Let us consider an example of tracker update (long lines were split for the 

reader’s convenience): 

GET /announce.php?uk=3b02d5XTYZ& 

&info_hash=%da%5d%a4H%20%e6%d23%25%cag%b9%10x%3f.%a0%ffk

%e9 

&peer_id=-UT1750-%fa%91%07%e1%10n%c3O%96%d1%be%3b 

&port=8080 

&uploaded=311181312 

&downloaded=0 

&left=0 

&key=8AA14C62 

&numwant=200 

&compact=1 

&no_peer_id=1 

HTTP/1.1 

Host: bt.torrents.ru 

User-Agent: uTorrent/1750 

Accept-Encoding: gzip 

The most significant parts of tracker update are described below: 

uk — stands for ―user key‖, identifies user within private tracker. 

info_hash — primary hash for torrent content. 

peer_id — client software id (UT1750 means Torrent 1.7.5.0). 

port — port at which client software accepts incoming requests. 

uploaded — amount of data uploaded in the scope of this torrent. 

downloaded — amount of data downloaded in the scope of this torrent. 

left — amount of data required to complete torrent. 

We see, that amount of data downloaded and uploaded are reported to private 

tracker server by the client. Tracker server cannot validate this claim directly, 

because it does not know exactly, which peer is downloading or uploading to which 

peer in the swarm. Even indirect calculations, based on the estimation of number of 

leeching, downloading, and finished clients and overall traffic they reported, could be 



dramatically wrong because some clients might have cancelled downloads or there 

may have been communication issues between tracker and clients, but not among 

clients themselves, as often happens in large home networks. 

Conclusion and recommendation 

There are number of ways in which reported ―downloaded‖ and ―uploaded‖ 

values could be faked. Most flexible but terribly time-consuming process would 

involve development of own BitTorrent client or modifying existing open-source 

client. Other way, sometimes described in hacking-related forums on the Internet, 

would require interfering with active connection between client and tracker, 

suppressing legit tracker update request and inserting forged one in its place. This 

too, however, requires deep understanding of TCP/IP implementation and reverse-

engineering skills. 

We hope that future generations of BitTorrent protocol will employ 

sophisticated methods to block this type of ―attack‖. 

 

References 

1. Stephanos Androutsellis-Theotokis, Diomidis Spinellis. A Survey of Peer-to-

Peer Content Distribution Technologies // ACM Computing Surveys,— 

2004.—36(4).—P.335–371. 

2. Stefan Saroiu, P. Krishna Gummadi, Steven D. Gribble. A Measurement Study 

of Peer-to-Peer File Sharing Systems. Technical Report UW-CSE-01-06-02, 

University of Washington, Department of Computer Science and Engineering, 

July 2001. 

3. Poryev G.V. The Application of the Peer-to-Peer Network Technologies // 

Proceedings of Scientific Workshop of Donetsk National Technical University. 

Issue #12(118) ―Computing Technology and Automation‖.—DNTU, Donetsk 

(Ukraine), 2007.—p.150. 

4. Poryev G.V. Data Integrity Control in the Distributed Networks // Western-

European Magazine on Advanced Technologies. Issue #4/2(22).—KNURE, 

Kharkiv (Ukraine), 2006.—P.32-35. 

 

Порев Геннадий Владимирович, 

Порев Владимир Андреевич 

 

Возможность подделки отчётов 

трафика в частных трекерах BitTorrent 

 

Выполнен краткий обзор развития 

пиринговых сетей и его исторических 

тенденций. Проанализирован 

жизненный цикл контента и способы 

распределения нагрузки в сетях 

BitTorrent. Показано, что отчёты 

Порєв Геннадій Володимирович, 

Порєв Володимир Андрійович 

 

Можливість підробки звітів трафіку в 

приватних трекерах BitTorrent 

 

Виконано короткий огляд розвитку 

пірінгових мереж та його історичних 

тенденцій. Проаналізовано життєвий 

цикл контенту та способи розподілу 

навантаження в мережах BitTorrent. 

Показано, що звіти трафіку в 



трафика в частных трекерах BitTorrent 

могут быть подделаны. 

приватних трекерах BitTorrent можуть 

бути підроблені. 

 


