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ABSTRACT 

Measurement of refraction distribution in the human eye opens new opportunities to make photorefractive surgery more 

accurate due to accounting imperfections not only of the cornea, but of the eye as an optical system. To calculate the  

to-be-ablated cornea layers, mathematical relations must be found between measured coordinates of retina ray tracings and 

transfer function of an eye. A new concept for modelling eye optical system is proposed using four phase transparencies, each 

of them exercising its own function: accommodation (equivalent to varifocal system), image focusing on the retina (optical 

system with constant optical power), regular aberrations (spherical and chromatic, astigmatism), and irregular phase 

distribution. It is shown, how the parameters, necessary for phase transparencies description, can be derived from direct and 

indirect measurements. Results of modelling experiment with simplified set of test points showed good sight correction. 

Investigated methodology proved to be fruitful even with limited number of test points and restricted length of polynomial 

approximation. In our refraction mapping system, transfer function reconstruction will use initial information from 65 points. 
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1. INTRODUCTION 
 

Optical eye models have been evolved from simplest ones that predict the first-order properties of biologic eyes to higher-

order models that include proper aberration content113. The simplest models represent a series of eye structure elements 

(cornea, lens and media), that describe paraxial ray traces. All surfaces are spherical, optical media are homogeneous, i. e., 

their refractive indices do not vary in space. Such models are only approximations, they do not reflect all eye peculiarities, 

even if the eye is emmetropic. Further model development was oriented on aspherization of cornea and lens surfaces and 

taking into account complex lens structure. Lotmar4 modified Gullstrand’s and Le Grand’s eye models1, 3 by introducing 

aspherics for description of the anterior surface of the cornea and posterior surface of the lens. The asphericity of the cornea 

was determined keratometrically, and the asphericity of the posterior lens surface was varied to match the measured spherical 

aberration. 

 

El Hage and Berny proposed a similar model5, except asphericity variance of both lens surfaces to match the measured 

spherical aberration. Corneal topography was determined experimentally by using photokeratoscope. After several attempts to 

approximate lens profile of the model, that could match spherical aberration of a real eye, hyperbola was taken as a meridian 

section of the anterior surface of the crystalline lens. An equation of the posterior surface was dependent on the accuracy of 

spherical aberration’s approximation5. The Kooijman’s eye model6 also has all surfaces aspheric. Anterior and posterior 

cornea surfaces are ellipsoids, anterior lens surface is hyperboloid and posterior lens surface is paraboloid. Determination of 

asphericity coefficients is based on modelled matching and real retinal illumination distributions rather than on approximation 

to real aberrations. The corresponding model7 accounts Stiles-Crawford effect (reduction in the perceived visual response by 

retina as a function of increasing angle of incidence of light). 

 

For inclined wave fronts, these models do not work. Therefore, models were developed introducing the lens with refraction 

index varying in radial direction8, 9; or having multilayer composition1013. Physiological aberrations have been measured by 

several authors independently14, 15, and showed that: 
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 physiological aberrations do not match with aberrations of ideally modelled optical system; 

 transverse aberrations have significant differences even in the neighbouring zones at distances 1-2 mm; 

 these differences of refraction are of the order of two diopters; 

 aberrations’ value and aberrations’ distribution are not in accurate dependence with the degree of myopia or hyperopia;  

 dispersion of refraction is inversely proportional to sight acuity. 

 

Unfortunately, no one among the known models fits the case of non-homogeneous and irregular refraction distribution inside 

the eye. These models deal with centered surfaces, homogeneous media or regular spatial distribution of refraction index. 

First-order models fail to take into account eye aberrations. Higher-order models do it, but aberrations of the periphery ring 

zones of the pupil are difficult to be calculated. The more complicated model, the higher is the role of the parameters, 

measured directly on the live eye. In our approach, we tried to overcome the difficulties that arise in eye structure description. 

We propose phase-transparency model, that fits the needs of retina ray-tracing technique. 

 

2. PHASE-TRANSPARENCY MODEL 

 

It is well known that optical system of the eye implements the following functions: image forming on retina; accommodation, 

due to variations of optical power of eye’s elements; and illuminance control, due to variations of iris diameter in the process 

of eye’s accommodation to luminous field. These eye’s functions could be executed by four thin plates - phase transparencies 

(fig. 1). The first and the second transparencies carry out the function of reshaping the wave front, i. e., phase distribution in 

the propagating electromagnetic wave, in such a way as to transform its shape from a convex or plane type to a concave type. 

In this case, front’s normals (rays) intersect the retina in a single point. The first phase transparency is equivalent to varifocal 

system (for accommodation), and the second - to optical system with constant optical power (for image focusing on the 

retina). 

 

 

Fig. 1. Modelling an optical system of an eye with phase transparencies 
 

 

The third and fourth transparencies model a kind of counteraction to the first two transparencies in carrying out their actions. 

The third phase transparency represents regular spherical aberrations, regular astigmatism, and chromatic aberrations. The 

fourth phase transparency models irregular influence on the phase of a wave, propagating through the eye. It describes 

irregular aberrations, resulting from natural imperfections of a real eye. 
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Accommodation transparency - phase transparency #1. The first phase transparency models varifocal optical component 

(i. e., optical component with variable focal length) without aberrations. Its task is to transform a convex wave front into the 

plane front, which then enters the second transparency. Radius of a convex spherical wave is restricted by distances of far and 

near points of clear sight. For normal eye, it is an interval from - to -90 mm. During the human life, the depth of 

accommodation is being reduced. Distance аn in fig. 2 indicates the distance from an eye to the near point of clear sight, and 

distance af - to the far point. 

 

As it can be seen from fig. 2, the accommodation phase transparency introduces a zero phase shift for axial ray, and some 

positive shift at the periphery: 
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where 1(h) is a phase shift, h is a distance from axis to a ray, k = 2/ is a wave number, а is a radius of a convex spherical 

wave, i. e., the distance from eye to object of sight fixation. According to the rule of sign, distance а in the expression (1) has 

the sign “”). Distance а varies from - to -90 mm in normal eye, and from аn to аf in the eye with reduced depth of 

accommodation.  

Fig. 2. Phase transparency # 1: 1 - wave front before the transparency, 

2 - wave front after having passed the transparency 

 

Refraction transparency - phase transparency #2. The second transparency models the refraction of an eye without 

aberrations, when a plane wave enters an eye, i. e., it is accommodated for infinity. In this case, the transparency transforms 

the plane front into a concave spherical front (fig. 3) with zero phase shift on the axis and positive phase shift at the periphery: 
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where n’=1.337 is the refractive index of vitreous. 

If an eye is emmetropic, then point F’ coincides with the retinal surface. If ametropic, then this point will be in front of the 

retina (in the case of myopia) and behind the retina (in the case of hyperopia). The above expression can be rewritten as 

follows: 
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is a parameter of ametropic eye. 

Fig. 3. Phase transparency # 2: 1 - wave front before the transparency, 

2 - wave front after having passed the transparency 

 

Aberration transparency - phase transparency #3. Unlike previous transparencies, phase transparency #3 describes the 

deviation of wave front from regular spherical form. Aberrations are supposed to be regular, i. e. they can be expanded into  

power series relatively to ray coordinates. Phase shift, caused by the transparency #3, may be computed using the function of 

wave aberration. In fig. 4a, wave aberration Wnm(, ) is shown as a distance between wave front W3 of the third phase 

transparency and spherical wave front W1+2, formed by transparencies #1 and #2. Phase shift 3 (, ), caused by the third 

transparency, is defined as follows: 

 

3( , ) ( , )      k n Wnm , (4) 

 

where  and  are polar coordinates in the plane of transparency #3, Wnm(, ) is wave front function that may have no central 

or axial symmetry. 
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Fig. 4. Phase transparency # 3: W1+2  is a spherical front, having its center in point F’, 

W3 is a wave front, deformed by aberrations, W is wave aberration, D is the diameter of the pupil 

Transparency of irregular aberrations - phase transparency #4. Irregular aberrations (fig. 5) are the result of optical non-

homogeneity of eye media and local deformations of eye’s optical surfaces. These aberrations are specific for each individual 

and can be different for left and right eyes. Irregular aberrations are difficult to be expanded into power series. Function of 

phase shift 4(y, x) is defined by difference between actual wave aberration W(, ) of the real eye and function of regular 

wave aberration Wnm(, ), being modelled by the third phase transparency: 

 4( , ) ( , ) ( , ) ,y x k n W Wn m         (5) 

where y x      cos , sin . 

 

 

Fig. 5. Phase transparency # 4 

 

Function W(, ) can be got only experimentally by measuring local eye refraction or distribution of transversal aberrations. 

Orthogonal coordinates y, x are preferable for presentation of function 4, because its 3D graph has local maxima and 

minima (“hills” and “valleys”) without any symmetry, and therefore, it is more convenient for interpolation in orthogonal 

system of coordinates. 

3. EVALUATION OF MODEL PARAMETERS 

 

To evaluate transfer function of an eye, all components must be summed up: 

 

    ( , )y x    1 2 3 4 .     (6) 

 

From (y, x), pupil function is determined, as well as the topography of the to-be-ablated cornea layers. Optical system of 

an eye is shown in fig. 6 as a set of phase transparencies. Two rays pass through it. One of them is an axial ray, another ray is 

an arbitrary-inclined ray with coordinates ,   or y, x at the plane of transparencies.  

 

It is well known that image A' will not be distorted by aberrations, if the first and second rays reach the point A' with the same 

eikonal value. The phase increment is equal to 2 ( ) /  n a a  for axial ray and  2         a a n y x  ( ) ( , )  for 

inclined ray. Both increments are equal to each other, if        n y x( , ) , or 
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where Wz (y, x)  is the phase component of pupil function16. 

 

Substituting expression (6) into (7), one can get 

 

W y x nz( , ) ( ) ( )             1 2 3 4 .   (8) 
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Fig. 6. Evaluation of transfer function 

 

 

If  1 0  , it means that point А is located outside the accommodation limits of an eye.  If  2 0    n , it indicates 

that the eye is ametropic. The sum of both brackets of (8) equals zero, when ametropia is compensated by additional 

accommodation effort. If the sum of these brackets in real eye does not equal zero, additional phase transparency must be 

inserted, i. e., lens (glasses or contact lens), or the cornea surface must be ablated to obtain sharp image of the point А.  

A similar procedure of compensation must be done as well, when 3  0 and 4  0. Thus, when condition (7) is not 

implemented, it is necessary to add some term r y x( , )  into (7): 

 

 r zy x W y x, ( , )  ,      (9) 

 

i. e., additional phase transparency should be inserted, whose phase component is identical to that of the pupil function, bu t 

having the opposite sign. 

 

Function r y x( , )  simplifies computations of the topography of the to-be-ablated layers of the cornea, because their 

thickness is proportional to r y x( , ) . In this way, aberrations, as well as ametropia, may be corrected. 

 

Pupil function f(y, x), used for computations of the most important characteristics of sight, is defined as follows16: 

 f y x y x i W y x y xz( , ) ( , ) exp ( , ) , ,    
1
2     (10) 

and 

f y x y x( , ) , , 0   

 

where  is a hole zone of the exit pupil,  (y, x)  is a function of transmittance of an optical system in pupil coordinates, 

accounting Stiles-Grawford effect (if necessary). 

 

Point spread function (PSF) e (y', x') is calculated as16: 
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where  y x,  are coordinates in the plane of retina. 

 

Optical transfer function (OTF) is defined as Fourier transform of PSF or as autocorrelation of pupil function: 
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where B x y dydx y xy x       ( , ) , , ;0 0



 S(y0, x0) - see fig. 7; y, x are spatial frequencies on axis oy and ox,  is 

a wavelength. 
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Fig. 7. Evaluation of the OTF using auto-correlation of pupil function 

 

Note, that y0 and x0 (fig. 7),  i. e., coordinates of the center of shifted pupil contour, are limited by the value of 2D, where D is a 

diameter of exit pupil. Then, the maximum values of y0 and x0 are equal to D. Therefore, the highest value of angular spatial 

frequency is 
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Hence, the highest linear spatial frequency in the retina plane equals to 
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Sight acuity is defined as value, inverse to yl  or xl. 

 

Equations (10), (11), and (8) are used to find the PSF defining the region of values of  y x, , where relative level of irradiance 

is greater than a given value. These values restrict the space of focal region determining sight acuity and depth of sharp vision. 



 

To determine transfer functions of phase transparencies, several parameters and functions are to be found, among them 

distances an and af , pupil average value of myopia or hyperopia, functions Wnm(, ) and W(, ). All of them can be obtained 

by direct or indirect measurements with investigated eye. Experimental setup for these measurements, its functional structure 

and principal concepts are described in our previous works17, 18. The essence of the method consists in determining wave 

functions from a set of data of measured declinations (in the plane of retina) of thin rays entering the eye in the points with 

known coordinates. Zernike polynomials are used for analytical expressions, describing wave functions. 

4. EXPERIMENTAL RESULTS AND MODELLING 

 

For our first experiments, we have chosen a limited number of test points in the polar system of coordinates. Totally, 16 

points were tested, placed on two circles with diameters 3 mm and 5 mm (8 per circle). We measured the coordinates of 

crossings of the retina by thin laser rays entering the eye in predetermined 16 points. These data were used for wave and 

transfer functions evaluation. Refraction map of the eye in terms of focal power can be also reconstructed. We demonstrated 

this procedure for four typical cases of refraction non-homogeneity17. 
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Fig. 8. Placement of test points in pupil coordinates 

Transfer function, interpolated using Zernike 

polynomials, gave start for modelling ablation 

procedure with flying spot technology. The 

results of ablation modelling were then 

recomputed into retina ray crossing points for 

comparison with initial objective measurements. 

As an illustration, measurements and modelling 

on myopic eye are demonstrated by figures  

8-12. Fig. 8 represents the placement of test 

points, where thin laser beams enter the eye (in 

parallel to sight axis). Fig. 9 shows positions of 

these beams’ centroids on retina. Reconstructed 

refraction map in terms of focal power is shown 

in fig. 10. After interpolation, restricted by four-

term polynomials, transfer function is got  

(fig. 11). Results of ablation modelling (in the 

form of retina crossing points) are demonstrated 

in fig. 12 (note, that coordinate scaling in  

figures 9 and 12 differ by an order). 
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Fig. 9. Positions of beam centroids on retina Fig. 10. Reconstructed refraction map (in diopters) 
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Fig. 11. Reconstructed transfer function Fig. 12. Modelling of retina ray tracings after sight correction 

 

 

5. DISCUSSION AND CONCLUSION 

 

Measurement of refraction distribution in the human eye opens new opportunities to make photorefractive surgery more 

accurate due to accounting imperfections not only of the cornea, but of the eye as an optical system. Described here 

methodology of using phase-transparency model proved to be fruitful even with limited number of test points and restricted 

length of polynomial approximation. Our recent studies showed that the six-term Zernike approximation will be optimal 

issuing from the criterion “accuracy-computing resources”. In our refraction mapping setup, 65-point sensing will be used 

(one point is central plus 64 points placed on four circles). 
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