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ABSTRACT. In this paper the simulation of vibroacousticalrsils radiated by the engine turbine at
the stationary vibration excitation is carried éut situations when all turbine blades have no cisfe
and one blade has a small fatigue craBlspectral analysis is used for diagnostic infoiiorat
processing. It demonstrates that appearance arldtiewoof the fatigue crack in a blade change
intensity of global and local extremums of bispalctnodules. The results of bispectral processimy an
Probability Neural Network (PNN) are used to redegnof the turbine blades condition. The
efficiency factor is used for precision analysis

INTRODUCTION

Now the problem of prolongation of aircrafttiine engine working life and increasing
their reliability is the issue of the day. This plem may be solved using effective methods
and means of technical condition monitoring for sthoengine systems, units, and
components which limit its working life to the utstoThese components are turbine and
compressor blades which contain as usual the majofi engine strengthening faults
caused by vibration.

Vibration and vibroacoustical blade conditioronitoring and incipient strengthening
faults diagnostics permit to avoid the engine desion during it exploitation, raise
reliability, and increase its working life. On treher hand, vibroacoustical methods
provide the possibility to diagnose and non-desitraly evaluate defects without
disassembling an engine.

This work is dedicated to further developmaeait low-frequency vibration and
vibroacoustical diagnostic methods which are used rhonitoring, diagnosis, and
evaluation of small fatigue cracks in aircraft eregblades at an engine stationary and non-
stationary operating modes. Low-frequency vibi@tmd acoustical noises (0-25 kHz) are
considered as diagnosis information. These n@sesadiated by blades of a rotor which
rotates with steady or varying frequency.



PROBLEM STATEMEN

In order to develop a monitoring system inecessary to solve some theoretical and
applied problems such as processing of diagnostiormation, diagnostic features
extraction, and decision-making about technicadawn of engine blades.

One of the effective methods used for sigmat@ssing is higher-order spectral analysis
which is based on use of higher-order statistidaracteristics [1]. This method has
substantial advantages in comparison with the ttcadispectral-correlation analysis. It
reduces noise influence on diagnostic featuresextichcts combination and modulation
frequency components which are statistically cotedec

Recognition of test object condition usingragted diagnostic features during signal
processing is the final procedure of a diagnostioc@ss. In development automatic
vibroacoustical monitoring system the problem afognitioncan be solved using neural
networks.

The aim of this work is efficiency analysis lmEpectrums using neural networks for
recognition of aircraft engine blade condition tatisnary regimes.

SIMULATION OF VIBROACOUSTICAL SIGNALS

Simulation of output vibroacoustical signals made according to the diagram
demonstrated on "Fig. 1". The model of an airceafjine turbine contains 21 blades and is
presented by a control system consisting of dynammids with parallel connection
(z,,i=1,n). As the input effect it is considered vibratiatar excitation P(t) at stationary

operating mode. It is described by the model oblghmrmonic process:
n
P(t)= R siri2rt ,t+ ;o) (1)
i=1

where Pi,(l)io are amplitude and starting phase of i-th harmomicsordingly; f, is

excitation frequency which corresponds to enginating speed.
Simulation is realized with following data, : P, =1:107%;f,=125 Hz; n=2;¢,qare

random starting phases uniformly distributed inrtkmge[O;Zn].
Defectless blades are described by the mddmt dnear oscillating system with natural
frequencywr (fr =600 Hz). The pulse characteristic of it is:

an(t) = i sinwt . (2)
QN

The model of a blade with a fatigue crack is pnésd by the model of an oscillating
system with piecewise-linear characteristic of eowering force. The pulse characteristic
of a blade model is expansion in fourier seriebammonics of the cracked blade model
base frequencyg[2]:

K
g(t) = a70 + > ay coskuwpt )(3
k=1
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FIGURE 1. A diagram of vibroacoustical signals simulation.
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where  ag ag =

mocl(6+)2 ~ kA [(G+ D2~ 4ZK?] 6L
W =20/(L+¢Q); ¢=+/1-9; 3§ isa crack parameter, relatisigidity change.
The output signalsXare defined by convolution of the input excitatid) with the
corresponding pulse characteristic (2) or (3). Thevolution for each sampled reading is
defined from expression:

j
Xij =T D gj-p+1Pu s (4)
p=1

where AT is sampling periodj isanumber osampled reading.

Output signal S(t) is a sum of blade modepoeses in form (4) and stationary noise
N(t). The characteristics of noise are set in saietiay as to provide signal-to-noise merit

p=10',...10°.

Simulation was accomplished in time frame lihwhe sampling period\T = 2M107%¢c
providing total number of point& = 5000. Signals S(t) were found at mentioned above
data and different intensity noise N(t) for defesH blades and for case one of the blades
had a crack with parameter. Simulated vibroacoustical signals were processsdg
higher-order spectral analysis (bispectral analysis

HIGHER-ORDER SPECTRAL ANALYSIS

It is known that spectral density of a stagignprocessx(n) can be found using Fourier

transform for autocorrelation sequence or autotatiom function of a process [1]. The
natural generalization of autocorrelation functeme higher-order moments, and specific
nonlinear combinations of these moments are cunsilan

The first order cumulant of a stationary psxas its average value. Higher-order
cumulants are invariant to average value changeetftbre theyan be found for processes
with zero average value from the expression [3]:

Cox (K) = XX (m)x(n +k)}; )(5
Cax (K, 1) = E{x (m)x(n +K)x(n +1)}; ©)



Cax (K1, m) = EXHn)X(n +K)x(n+ )X+ mh = Cay (K)Cy (1 =m) = o (1) Coe (k= m) - -
~ M3y (MM (k—1)
where E{} indicates ensemble averaging; * -is mark conjngat
Mo, (M) = E{x(n)x(n+m)} =Cyy(m) - for real-valued processes.
The autocorrelation function is a cumulanth@ second order according to (5). Higher-

order spectral characteristican be found using Fourier transform for appropriate
cumulants:

Sox(f) = 2 Cox (k) exp(-j2rik), (8)
k=-co
Sax(f1,f2) = 2. 2. Cax(k,I)exp(-j2rfk)exp(j2risl) ; 9)
k=—00o|=-00

Sux(fr.f2.f3) = X Cax(k,1,m)exp(-j2rd k) exp(-j2rd Hl) exp(-j2rdzm),  (10)

k,I,m=—c

They are spectral density (8), a function wb tfrequencies - bispectrum (9), and a
function of three frequencies - trispectrum (10)héktas spectral density is the real
nonnegative value, the bispectrum and trispectmentemplex quantities.

Asymmetry parameters and coefficients of excesrmalized values) are widely used
to solve diagnostics and NDE problems. They areanant regarding transference and
scale, characterize the symmetrical and normalriloigion deviation of an analyzed
process, andan be found from (6) and (7). Higher-order specttadracteristics are the
most appropriate to process complicated nonlineasgsses which are the additive mixture
of non-Gaussian process and Gaussian noise [118% i§ typical for vibroacoustical
processes arising from a working aircraft engine.

Higher-order spectral analysis was appliedabbispectral module estimators. They are
presented in following forms: 1) three-dimensionalages characterizing bispectrum
module dependence on frequencigsand f,; 2) multicolored contour plots which are

certain configuration lines represented variou®ired estimates and differed in intensity
and geometrical adjectives; 3) diagonal sectionsradterizing bispectral module
dependence on frequency along symmetry line of iBi&ges. The listed above results of
bispectral signal processing for a turbine withracked bladef=0,05) are shown on "Fig.

2",

As the results of diagnostic information pregiag demonstrate, appearance and
development of a crack in the engine turbine leadhtange of global and local extremums
intensity of bispectral module estimators. The galof these estimatotsn be found from
the diagonal sections ("Fig. 2,c,d"). Influencetbé additive Gaussian noise on global
maximums intensity is low (decrease no more than), 4#hile the values of local
maximums increase by 12%. The relationship betveeerack generalized paramefeand
obtained bispectral estimators is illustrated ibl€al by the relative values aferaged

intensity of globallg/lg and IocaII|/IT maximums, and also by the

ratio of extremum valuel%/lI . Igqy @and iy, are values of diagnostic features at a crack
presence and absence accordingly.
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FIGURE 2. The results of bispectral signal processing forttinbine with a cracked blad&<0,05):
a) three-dimensional image; b) multicolored confalot; ¢) and d) - diagonal sections.

Diagnostic features change at initiation atadtgg development of a crac&<0.07) is
not regular. The ratio of bispectral module extrmmnalueslg/lI is the most sensitive to
a crack parameter change.

TABLE 1. Diagnostic features dependence on a crack parameter

5 0 0.01 0.03 0.05 0.07 0.1
lg/15
1 0.93 0.91 0.95 1.03 1.2
/ *
/1 1 0.89 0.88 0.91 0.89 0.9
'g/'l 121 1.26 1.24 1.26 1.38 158
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FIGURE 3. The image with shade of gray (a) and its fragmeht (

RECOGNITION OF TURBINE BLADE CONDITION

Recognition of turbine blade condition is cadrout with neural networks using contour
plots (outline pictures) of bispectral module estiars. The contour plotsan be found
transforming multicolored images ("Fig. 2,b") inages with shade of gray ("Fig. 3,a").
Then from each image with shade of gray is takénagment of its diagonal section ("Fig.
3,b").

Further, the received fragment is transfornmedumerical matrix. The elements of this
matrix are numbers from 0 to 255. Finally, matrotwenns are converted in a vector which
is supplied at the input of a neural network. Theeze used in twenties learning and test
sets to solve a problem of recognition.

Classification of turbine blade condition weesried out using a two-layer stochastic
neural network [4]. It has low learning time, pdsigiy to learn with a null error, and high
accuracy of recognition linearly inseparable typéa test object condition. The first layer
consists of 20 neurons. As a second layer it isl sgecalled a competitive layer from 2
neurons. These neurons determine correct solutiapility - the input vector belongs to
a faulty type or not. Such classification is basedBayes methods and needs probability
density estimate for a condition type. For that,afdearning vectors are used. Every vector
is described by Gauss function with a center ingbimt corresponded to this vector. The
sum of named functions according to the whole abéel set of learning vectors is
probability density of input vectors for each cdidi types. The value of the Gauss
function mean-square deviatian specifies width of the neurons activation functimd
define their influence on a probability density imstte sum. This implyies that the
parameteo influences on a classification result. Therefdsevialue is determined mostly
experimentally.

Effectiveness of turbine blade condition difesation by Probability Neural Network
(PNN) was judged by the coefficient K. This coaffitt is a value of correct classification
probability expressed in percentage terms. Relalignbetween the coefficient K and the
influence parametes for test set images is shown on "Fig. A%.can be seen from a given
plot, PNN recognizes the test images correctiherange of the parameter= 1.5, ... ,12.
Analysis of the coefficient K dependence on a nunab@bjects of learning set images
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FIGUR 4. Dependence of correct recognition probability loe influence parameter of a neural network.

demonstrates that it is enough to provide the lagrset from no less then 8 images for
each condition type to correct recognition.

So, in spite of diagnostic features irregmarand little changes at turbine blade
condition changing from defectless to faulty on&NPprovides correct classification of
diagnostic object condition.

CONCLUSIONS

1. Simulation and higher-order spectral analisfsvibroacoustical signals radiated at
stationary mode by an engine rotor with defectbass cracked blades indicate changing of
global and local intensity extremums of a bispeutrmodule at initiation and initial
development of a fatigue crack.

2. Application of a stochastic neural network pdeg test object condition classification
using results of bispectrum analisys (the crackpater was$=0.005,...,0.1).

3. Received results are new and justify efficientyest object condition recognition using
results of higher-order spectral analisys. Thessalt® can be used to create a
vibroacoustical monitoring system for aircraft ergrotor components.
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