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   ABSTRACT.  In this paper the simulation of vibroacoustical signals radiated by the engine turbine at 
the stationary vibration excitation is carried out for situations when all turbine blades have no defects 
and one blade has a small fatigue crack. Bispectral analysis is used for diagnostic information 
processing. It demonstrates that appearance and evolution of the fatigue crack in a blade change 
intensity of global and local extremums of bispectral modules. The results of bispectral processing and 
Probability Neural Network (PNN) are used to recognize of the turbine blades condition. The 
efficiency factor is used for precision analysis.      

  
 

INTRODUCTION 
 
     Now the problem of prolongation of aircraft turbine engine working life and increasing 
their reliability is the issue of the day. This problem may be solved using effective methods 
and means of technical condition monitoring for those engine systems, units, and 
components which limit its working life to the utmost. These components are turbine and 
compressor blades which contain as usual the majority of engine strengthening faults 
caused by vibration.  
     Vibration and vibroacoustical blade condition monitoring and incipient strengthening 
faults diagnostics permit to avoid the engine destruction during it exploitation, raise 
reliability, and increase its working life. On the other hand, vibroacoustical methods 
provide the possibility to diagnose and non-destructively evaluate defects without 
disassembling an engine.  
     This work is dedicated to further development of low-frequency vibration and 
vibroacoustical diagnostic methods which are used for monitoring, diagnosis, and 
evaluation of small fatigue cracks in aircraft engine blades at an engine stationary and non-
stationary operating modes.  Low-frequency vibrating and acoustical noises (0-25 kHz) are 
considered  as diagnosis information. These noises are radiated by blades of a rotor which 
rotates with steady or varying frequency. 
 
 



PROBLEM STATEMEN  

     In order to develop a monitoring system it is necessary to solve some theoretical and 
applied problems such as processing of diagnostic information, diagnostic features 
extraction, and decision-making about technical condition of engine blades. 
     One of the effective methods used for signal processing is higher-order spectral analysis 
which is based on use of higher-order statistical characteristics [1]. This method has 
substantial advantages in comparison with the tradition spectral-correlation analysis. It 
reduces noise influence on diagnostic features and extracts combination and modulation 
frequency components which are statistically connected. 
     Recognition of test object condition using extracted diagnostic features during signal 
processing is the final procedure of a diagnostic process. In development automatic 
vibroacoustical monitoring system the problem of recognition саn be solved using neural 
networks.  
     The aim of this work is efficiency analysis of bispectrums using neural networks for 
recognition of aircraft engine blade condition at stationary regimes.  
 
SIMULATION OF VIBROACOUSTICAL SIGNALS 
 
     Simulation of output vibroacoustical signals is made according to the diagram 
demonstrated on "Fig. 1". The model of an aircraft engine turbine contains 21 blades and is 
presented by a control system consisting of dynamic units with parallel connection 
( n1iZi ,, = ). As the input effect it is considered vibration rotor excitation P(t) at stationary 

operating mode. It is described by the model of a polyharmonic process:  
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where iP , 0iϕ  are amplitude and starting phase of i-th harmonics accordingly; pf  is 

excitation frequency which corresponds to engine rotating speed. 
     Simulation is realized with following data: 2

21 101PP −= :: ; pf =125 Hz; n=2; 0iϕ are 

random starting phases uniformly distributed in the range [ ]π20; . 
     Defectless blades are described by the model of an linear oscillating system with natural 
frequency ∗ω  ( =∗f 600 Hz). The pulse characteristic of it is:  
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  The model of a blade with a fatigue crack is presented by the model of an oscillating 
system with piecewise-linear characteristic of a recovering force. The pulse characteristic 
of a blade model is expansion in fourier series at harmonics of the cracked blade model 
base frequency 0ω [2]: 
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FIGURE 1.  A diagram of vibroacoustical signals simulation. 
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     The output signals Xi  are defined by convolution of the input excitation (1) with the 
corresponding pulse characteristic (2) or (3). The convolution for each sampled reading is 
defined from expression: 
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where T∆ is sampling period, j  is a number of sampled reading. 
     Output signal S(t) is a sum of blade model responses in form (4) and stationary noise 
N(t). The characteristics of noise are set in such a way as to provide signal-to-noise merit 

51 1010 ,...,=ρ . 

     Simulation was accomplished in time frame 1c with the sampling period 4102T −⋅=∆ c 
providing total number of points =N  5000. Signals S(t) were found at mentioned above 
data and different intensity noise N(t) for defectless blades and for case one of the blades 
had a crack with parameter ϑ. Simulated vibroacoustical signals were processed using 
higher-order spectral analysis (bispectral analysis). 
 
HIGHER-ORDER SPECTRAL ANALYSIS 
 
     It is known that spectral density of a stationary process )(nx саn be found using Fourier 
transform for autocorrelation sequence or autocorrelation function of a process [1]. The 
natural generalization of autocorrelation function are higher-order moments, and specific 
nonlinear combinations of these moments are cumulants. 
     The first order cumulant of a stationary process is its average value. Higher-order 
cumulants are invariant to average value change, therefore they саn be found for processes 
with zero average value from the expression [3]: 
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where { }•E  indicates ensemble averaging;   * -is mark conjugating;  

            )()}()({)( mCmnxnxEmM x2x2 =+=   -  for real-valued processes. 
     The autocorrelation function is a cumulant of the second order according to (5). Higher-
order spectral characteristics саn be found using Fourier transform for appropriate 
cumulants: 
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     They are spectral density (8), a function of two frequencies - bispectrum (9), and a 
function of three frequencies - trispectrum (10). Whereas spectral density is the real 
nonnegative value, the bispectrum and trispectrum are complex quantities. 
     Asymmetry parameters and coefficients of excess( normalized values) are widely used 
to solve diagnostics and NDE problems. They are invariant regarding transference and 
scale, characterize the symmetrical and normal distribution deviation of an analyzed 
process, and саn be found from (6) and (7). Higher-order spectral characteristics are the 
most appropriate to process complicated nonlinear processes which are the additive mixture 
of non-Gaussian process and Gaussian noise [1,3]. This is typical for vibroacoustical 
processes arising from a working aircraft engine. 
     Higher-order spectral analysis was applied to get bispectral module estimators. They are 
presented in following forms: 1) three-dimensional images characterizing bispectrum 
module dependence on frequencies 1f  and 2f ; 2) multicolored contour plots which are 
certain configuration lines represented various received estimates and differed in intensity 
and geometrical adjectives; 3) diagonal sections characterizing bispectral module 
dependence on frequency along symmetry line of 3-D images. The listed above results of 
bispectral signal processing for a turbine with a cracked blade (ϑ=0,05) are shown on "Fig. 
2". 
     As the results of diagnostic information processing demonstrate, appearance and 
development of a crack in the engine turbine lead to change of global and local extremums 
intensity of bispectral module estimators. The values of these estimators саn be found from 
the diagonal sections ("Fig. 2,c,d"). Influence of the additive Gaussian noise on global 
maximums intensity is low (decrease no more than 4%), while the values of local 
maximums increase by 12%. The relationship between a crack generalized parameter ϑ and 
obtained bispectral estimators is illustrated in Table 1 by the relative values of аveraged 

intensity of global *
gg II  and local *

ll II  maximums, and also by the 

ratio of extremum values lg II . )(lgI  and *
)(lgI  are values of diagnostic features at a crack 

presence and absence accordingly. 
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FIGURE 2.  The results of bispectral signal processing for the turbine with a cracked blade (ϑ=0,05): 
a) three-dimensional image; b) multicolored contour plot;  c) and d) - diagonal sections. 
 
     Diagnostic features change at initiation and starting development of a crack (ϑ<0.07) is 

not regular. The ratio of bispectral module extremum values lg II  is the most sensitive to 

a crack parameter change. 
 
TABLE 1.  Diagnostic features dependence on a crack parameter . 
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FIGURE 3.  The image with shade of gray (a) and its fragment (b).    
 
RECOGNITION OF TURBINE BLADE CONDITION  
 
     Recognition of turbine blade condition is carried out with neural networks using contour 
plots (outline pictures) of bispectral module estimators. The contour plots саn be found 
transforming multicolored images ("Fig. 2,b") in images with shade of gray ("Fig. 3,a"). 
Then from each image with shade of gray is taken a fragment of its diagonal section ("Fig. 
3,b").  
      Further, the received fragment is transformed in numerical matrix. The elements of this 
matrix are numbers from 0 to 255. Finally, matrix columns are converted in a vector which 
is supplied at the input of a neural network. There were used in twenties learning and test 
sets to solve a problem of recognition. 
     Classification of turbine blade condition was carried out using a two-layer stochastic 
neural network [4]. It has low learning time, possibility to learn with a null error, and high 
accuracy of recognition linearly inseparable types of a test object condition. The first layer 
consists of 20 neurons. As a second layer it is used so called a competitive layer from 2 
neurons. These neurons determine correct solution probability - the input vector belongs to 
a faulty type or not. Such classification is based on Bayes methods and needs probability 
density estimate for a condition type. For that, set of learning vectors are used. Every vector 
is described by Gauss function with a center in the point corresponded to this vector. The 
sum of named functions according to the whole available set of learning vectors is 
probability density of input vectors for each condition types. The value of the Gauss 
function mean-square deviation σ specifies width of the neurons activation function and 
define their influence on a probability density estimate sum. This implyies that the 
parameter σ influences on a classification result. Therefore its value is determined mostly 
experimentally. 
     Effectiveness of turbine blade condition classification by Probability Neural Network 
(PNN) was judged by the coefficient K. This coefficient is a value of correct classification 
probability expressed in percentage terms. Relationship between the coefficient K and the 
influence parameter σ for test set images is shown on "Fig. 4". As can be seen from a given 
plot, PNN recognizes the test images correctly in the range of the parameter σ = 1.5, … ,12. 
Analysis of the coefficient K dependence on a number of objects of learning set images  
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FIGUR 4.  Dependence of correct recognition probability on the influence parameter of a neural network. 
 
demonstrates that it is enough to provide the learning set from no less then 8 images for 
each condition type to correct recognition. 
     So, in spite of diagnostic features irregularity and little changes at turbine blade 
condition changing from defectless to faulty one, PNN provides correct classification of  
diagnostic object condition. 
 
CONCLUSIONS 

1.  Simulation and higher-order spectral analisys of vibroacoustical signals radiated at 
stationary mode by an engine rotor with defectless and cracked blades indicate changing of 
global and local intensity extremums of a bispectrum module at initiation and initial 
development of a fatigue crack. 
2.  Application of a stochastic neural network provides test object condition    classification 
using results of bispectrum analisys (the crack parameter was   ϑ=0.005,…,0.1). 
3.  Received results are new and justify efficiency of test object condition recognition using 
results of higher-order spectral analisys. These resalts саn be used to create a 
vibroacoustical monitoring system for aircraft engine rotor components. 
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