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ABSTRACT

A dramatic bicentenary history of the Thomas Young's wave interpretation of diffraction phenomena is briefly outlined.
Both theoretical and experimental milestones substantiating the Young's diffraction paradigm are discussed. Vitality and
topicality of the Young's views on the nature of diffraction are argued. Relation of the Young's concept of diffraction phe-
nomena with the novel decomposition of the solution of the diffraction problem in the spirit of 'singular optics' is consid-
ered.
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1. INTRODUCTION
This paper is devoted to the bicentenary jubilee ofthe Thomas Young's interpretation of diffraction phenomena (1801/1 802)
substantiating the wave nature of propagating light. This presentation is especially pleasurable for us, while the main contri-
bution in the development and assertion of the Young's model of diffraction had been made by Adalbert (Wojciech) Rubi-
nowicz, the great Polish scientist, one ofthe greatest physicians-theorists for Optics in the 20thcentury, and, before, the great
native of Chernivtsi (the city where this conference is held), and the prominent graduate of Chernivtsi University. Once more
ground to remind now the essence of the Young-Rubinowicz model of diffraction phenomena consists in the fact that this
model, at the threshold of its bicentenary birthday and at the spike of the 'Young's boom' (using the Prof Kakichashvily's
expression), meets the objections from the point ofview of such influential division ofmodern optics as a singular optics.

Evolution of the Young's views on diffraction, reviving again and again as Phoenics of Optics (and not only of Optics) de-
spite of incessant assaults, is too known to be reproduced here in details. In Section 2 we remind only the milestones of this
evolution, with emphasize on the criterion experiments those put in evidence physical adequacy of the Young-Rubinowicz
model of diffraction phenomena. Further, in Section 3 we analyze the alternative decomposition of the diffraction field in the
spirit of singular optics. Pro and contra of both approaches to description and understanding of diffraction phenomena are
discussed. At last, in Section 4 we summarize topicality of these approaches in solving of diverse problems of modem pure
and applied optics.

2. MILESTONES OF EVOLUTION OF THE YOUNG'S CONCEPT
OF DIFFRACTION PHENOMENA

The Young's heuristic explanation of an aperture diffraction is reduced to the following. Diffraction fringes at the directly
illuminated area behind an opaque obstacle result from interference of the geometric-optical wave (GOW) from a quasi-
point primary source, and the edge diffraction wave (EDW), which 'may be though of as arising from scattering of the inci-
dent radiation by the boundary of the aperture". At the same time, a diffraction field at the geometrical shadow region is
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equal to (coincides with) the EDW 're-scattered' by the boundary of the aperture. Let us at once to do three important re-
marks:

(i) The term 'boundary diffraction wave' is often used instead of 'edge diffraction wave' for the considerations of termino-
logical tradition, though the last term is more adequate2. Moreover, after developing statistical radio-physics and statisti-
cal optics, the terms 'boundary field' or 'boundary wave' are applied to the diffracting or scattering device as a whole
rather than to the rim ofthe field-of-view stop. To avoid terminological ambiguity, we say: 'EDW'.

(ii) Young assumed that the EDW 'is continuous everywhere, even across the boundary ofthe shadow'3.
(iii) As it is shown in rigorous diffraction theories4'5, 'the edge does not radiate'. Actually, the real edge radiation source is

forbidden electrodynamically4. It means that the edge retransmitters must to be considered only as virtual rather than
physically existing ones.

The last remark is supported by the well-known fact that the Young's model of diffraction phenomena cannot be directly
formalized proceeding from the wave equation, i.e. the second-order differential equation in partial derivatives of hyperbo-
lic type3. Nevertheless, it is remarkable that the observed diffraction pattern occurs, in all studied up to now cases, just the
same as it follows from the Young's predictions. To say that the stroke of genius Young's diffraction paradigm is physically
appealing is to say nothing. The same idea literally 'enters into the brain' to anyone who meets the diffraction problem. This
affirmation has more than valued historical confirmation. Namely, just the same explanation of a knife-edge diffraction had
been given by A.Fresnel (independently of Th.Young) in his first memoir on diffraction6 (1 81 5). Fresnel, in contrast to
Young, uses the results of his carefully performed and in details described measurements of the dependence of intensity
maxima and minima positions at the knife-edge diffraction pattern versus the distance of observation. The outstanding ex-
periments performed by Fresnel are described in his first paper in such details, which provide reproduction of them now us-
ing the modem source (laser) and metrological techniques. And these results are explained by Fresnel just from the Young's
point of view!

Fig.l reproduces the main graph from the Fresnel memoir by 1815. This graph is accompanied with the highly interesting
comments, which are reformulated here in terms of modem coherent optics. At first, spatial frequency (or, equivalently, spa-
tial period) of interference fringes observed at the geometrical shadow region and its evolution with changing ofthe distance
of an observation plane from an opaque strip is independent on the distance between the primary quasi-point (and quasi-
monochromatic) radiation source and the strip. The explanation, in the spirit of the Young's paradigm, is suggested itself:
the diffraction fringes behind a strip result from interference of the waves emanating from the strip's edges. At second, the
diffraction fringes at the directly illuminated area are spreading along hyperbolas rather than along straight lines . This be-
havior of diffraction fringes at the directly illuminated area can be explained only as follows: the diffraction fringes at the
directly illuminated area result from interference of two waves: one produced by the primary source and another originating
from the edge of an obstacle. It may be of interest from the historical point of view that the classical interference experi-
ment of Young reproduced in all textbooks in Optics along two centuries and widely used now for measuring of spatial co-
herence oflight had been initially performed just in the arrangement shown in Fig.1 (with the Young's own hair) rather than
into two-slit arrangement. Thus, Young accounted the virtual edge retransmitters rather thanfictirious Huygens' secondary
sources.

But why did Fresnel disavow his own initial explanation ofdiffraction phenomena, which had the mighty convincing force?!
The answer is simple being, unfortunately, related to any field of creative work. The matter of the fact, any conceptual prog-
ress in any sphere of knowledge entails with the creator's ambitions. Being publicly (of course, groundlessly) accused in
plagiarism, Fresnel declares a war to Young and (!) to himself. He performs several glorious experiments (including well-
known interference experiment with 'Fresnel bi-mirror'), the only purpose of which was to disprove the Young's model of
diffraction phenomena. Being steadfastly sure, due to his experimental experience, in the wave nature of propagating light,
Fresnel turns to the old Huygens principle. The detailed analysis of Fresnel argumentation against the Young's diffraction
paradigm is the subject of special paper. Here we note only: all Fresnel arguments are seemed to be naive from the point of
view of modem optics.

* It is worthwhile to be emphasized that only this simple result, disproving much less accurate measurements performed by Newton, was
the criterion one led to the triumph of the wave interpretation of propagating light's phenomena.

One can refer to any comprehensive monograph in holography to take understanding that any plane hologram of a point source is the
photographic recording of spatial cross-section of the set of hyperboloids of rotation resulting from interference of two spherical waves.
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The main success of Fresnel was in the remarkable mathematical description ofa knife-edge diffracUon pattern (Fresnel in-
tegrals) that gave correct positions and magnitudes ofmaxima and minima ofthe spatial light intensity distribution behind an
opaque half-plane. All predictions of the Huygens-Fresnel principle were reliably proved, including important experiments7'8
in the sixties of the centáry. It has been experimentally shown that the configuration (spatial frequency), intensity and
phase distributions of a knife-edge diffraction pattern in the nearest vicinity of the geometrical shadow boundary are gov-
erned by the Fresnel integrals and correctly imaged using the Cornu's spiral. However, it deserves to remind the limitations
ofthe Fresnel considerations. First of all, Fresnel, similarly to Young, never wrote the wave equation; it had been made only
by Kirhhoff in 1 882. Fresnel constructed his description of diffraction by formalizing the heuristic Huygens principle rather
than deriving it from the rigorous wave notions. Further, Fresnel integrals had been constructed under the paraxial approxi-
mation. Both Fresnel and later researchers established that the knife-edge diffraction pattern was not dependent on polariza-
tion of the radiation, on conductivity of the screen, and on the curvature of the diffracting edge7. This fact is often used in
criticism of the Young's model9"°. However, one has to take in mind that

Figure 1 [6} To the initial explanation ofdiffraction phenomena by Fresnel: S - quasi-point (and quasi-monochromatic) primary source, A
and B - the edges of the strip (a wire in the Fresnel experiment and a hair in the Young's prior experiment). Fresnel draws the circles
cente-red at the strip edges and shows the measured by him isophotes of diffraction (interference) pattern: straight interference fringes
within the geometrical shadow region and hyperbolas at the directly illuminated area.
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Figure 2. Behavior of diffraction field at large diffraction angles predicted by the rigorous (vector) Sommerfeld's solution of diffraction
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the experimental results represented in Ref.7 are obtained within the nearest vicinity of the geometrical. shadow boundary,
namely, for the diffraction angles non exceeding Ø•50• As it follows from the vector diffraction theories"4'5"'2 all solutions
of the diffraction problem are equal to each other for obstacles of any conductivity and for the probing beams of any state of
polarization within this range of the diffraction angles alone. At the same time, these theories predict considerable depend-
encies of a diffraction field behavior on the state of polarization of the incident wave for large diffraction angles. Such de-
pendencies are observed not only at the radio-wave range of spectrum, but also in optical experiments'3. Of course, the Fres-
nel scalar solution is incorrect at the diffraction angles far from paraxial region. The well-known consequence of this fact is
that the diffraction field's amplitude vanishes only at 180° rather that at 900,as Fresnel believed. The Fresnel solution gives

only a part of even a scalar solution, as it is seen from Fig.2, where usI and IusI
showthe angular de-pendencies of the

diffraction field intensity predicted by Sommerfeld's theory for the cases, respectively, when the electrical vector ofthe mci-
dent wave is perpendicular to the diffracting rim of the perfectly conducting half-plane (H-polarization) and parallel to this

rim (E-polarization), and fr'RI corresponds to the scalar solution derived from the Kirhhoffs diffraction integral or,

equivalently, from the Rubinowicz's representation ofthis integral'3.

Formal equivalency of the Young's and Fluygens-Fresnel interpretations of diffraction phenomena was understood shortly
after developing of the Kirhhoff's scalar theory of diffractions. In 1888, MaggV4, applying the well-known Stokes theorem,
reduced the double Kirhhoff's diffraction integral over an aperture at an opaque screen to the single (curvilinear) integral
over the rim of an aperture. This result had been consigned to oblivion up to 1917, when it had been anew substantiated by
Rubinowicz'5, who had a possibility to compare his solution with the rigorous Sommerfeld's solution of the problem of dif-
fraction at the edge of perfectly conducting half-plane. Moreover, Rubinowicz could lean for support on the entrancing Ka-
lashnikov experiment (191 1) dealing with observation of the EDW at the geometrical shadow region. The Kalashnikov cx-
periment is sketched in Fig.3. A light from the quasi-point primary source, PS, is incident at the knife-edge, KE. At the geo-
metrical shadow region Kalashnikov places several pins shown in Fig.3 by black circles. Beyond the pins, he places a photo-
graphic film that undergoes long-time exposure by the diffraction field. If the Huygens-Fresnel secondary sources at

Figure 3. Sketch of the Kalashnikov experiment: PS - primary quasi-point source, KE - knife-edge; black circles are the pins followed by
a photogr.aphic film.

*

Saying 'formal equivalency' we mean that the Young's and Fresnel approaches are alternative to each other (being derived from differ-
ent initial ideas), but that these approaches are not mutually exclusive (being reduced one to other by the direct mathematical transforma-
tion).
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a half-infinite aperture are real, then the processed film's darkening must to be uniform. But the Kalashnikov experiment
leads to the opposite result. The film's darkening occurs to be non-uniform, and the positions of the areas of the film's
maximal amplitude transmittance correspond to the situation, when the film is exposed by the wave as fpropagating from
the knife edge, i.e. by the EDW. This simple experiment excludes an ambiguous interpretation. It shows that, though the
edge retransmitter is forbidden, the wave motion at the geometrical shadow region is nevertheless the same as it has been
predicted by Young. Namely, the part of a knife-edge diffraction field propagating into the geometrical shadow of a half-
plane is the cylindrical wave with the origin at the diffracting edge.

The glorious theoretical result obtained by Rubinowicz is reproduced here in the extremely simplified form proper to our
consideration. The contribution ofthe EDW into diffraction field is described by the contour integral with the integrand con-
sisting of three factors. First of them is a (spherical or plane) wave coming to the running point of the rim of an aperture
from the primary source, the second is the spherical wave diverging from this point into half-space behind the aperture, and
the third is the inclination factor determining anisotropic structure of the EDW. Fig.4 shows schematically the actual genesis
of a knife-edge diffraction for the case of normally incident plane wave. The GOW, zig, undergoes disrupt at the geometri-

cal shadow boundary, being equal to unity at the directly illuminated area, and being equal to zero at the geometrical shadow

region, while the EDW, ud governed by the angular dependence ud(O) cot(9/2) , where 0 is the diffraction angle.

One can see that, in contrast to the initial Young's idea, both components of the diffraction field supposed by the Young's
paradigm undergo discontinuities at the geometrical shadow boundary. It means that both components, being taken sepa-
rately, do not obey the wave equation. Real wave motion behind the screen is provided only by the combination of these
components, as the discontinuity in one component is compensated by the discontinuity into another component. The nature
of the discussed discontinuity is quite clear: it is the direct consequence of the discontinuous Kirhhoff's boundary condi-
tions' . It is clear that the formal representation of a diffraction field as a sum ofthe GOW and the EDW loses validity at the
nearest vicinity ofthe geometrical shadow boundary. This circumstance is sometimes used as the impact argument in objec-
tions against the Young's (-Maggi-Sommerfeld-Rubinowicz-Miyamoto-Wolf- etc.) approach9"°. However, this inconsis-
tency with the paradigm of everywhere continuous wave motion takes place within really very narrow area in the vicinity of
the shadow boundary, whose cross-section is of the order of magnitude of the central Fresnel zone constructed at the obser-
vation plane from the real primary and the virtual edge sources. Under typical conditions of
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Figure 4. Components of a knife-edge diffraction field following to the Rubinowicz representation of the Kirhhoff's diffraction integral

(a): Ug is the GOW, ud is the EDW, and formation of a knife-edge diffraction pattern (b): PS - primary source, KE - knife edge, 0 is

the diffraction angle.
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an optical experiment angular extension of this zone is always much less than 1 2rad. Outside this narrow area, the asymp-
totic Young-Rubinowicz model provides high-accurate description of a diffraction field. Scalar approximation gives practi-
cally reasonable results up to 30-40 degrees, i.e. everywhere within the Fourier-optics domain. Moreover, a direct vectorial
generalization of this model using an electromagnetic theory of diffraction is possible to describe a diffraction field at larger
diffraction angles. To perform such a generalization, one must simply to identify a whole diffraction field at wave zone (at
the distances from the edge z >> )within the geometrical shadow region with the EDW'3, and to apply to this field an
electro-magnetic diffraction theory' '. In contrast, in the vicinity of the shadow boundary one must to use the Fresnel inte-
grals or compute a whole (undivided into components) field on the base ofthe Leontovich's parabolic equation, which gives
highly accurate solution.

An independence of diffraction on the matter (conductivity) and on the structure of the diffraction device (curvature radius
of the diffracting edge) at small diffraction angles fmds its exhaustive explanation within the framework of so-called 'quasi-
optics ' based on Leontovich's parabolic equation. Let's remind that the transition from the exact hyperbolic (wave) equation
to the asymptotic parabolic (diffuse) equation is performed under paraxial approximation, when one can neglect the second
derivative of the propagating field on z -coordinate (+z is the propagation direction of the incident wave). Within the
framework of quasi-optics approach, the true origin of diffraction is recognized. Namely, non-zero gradient ofthe field be-
hind a sharp edge ofan opaque obstacle is only the actual source ofdffraction phenomena; the diffracting edge is only the
precondition to provide the gradient ofan amplitude along the wavefront. In its turn, the amplitude gradient provides pecu-
liar effect of an <<amplitude diffusion>> (diffusion without mass-transfer) of the wave through the geometrical shadow bound-
ary. Being <<diffusing>> (tunneling) through the shadow boundary, the complex amplitude of a wave field 'goes out' from the
directly illuminated area with its own phase. It explains, why the EDW within the geometrical shadow region is 'in-phase'
with the incident wave (see Fig.4). Further, the lack of complex amplitude at the directly illuminated area due to diffusion
may be interpreted as the resultant effect of complementary edge source (re-)transmitting into this area in opposite phase in
respect to the incident wave, in agreement with the structure of the inclination factor supposed by the Rubinowicz's repre-
sentation of the Kirhhoff's diffraction integral (see Fig.4). If the diffraction field propagates in a free-space beyond the ob-
stacle, than the origin of amplitude gradient (material obstacle's sharp edge) is neglected, and only amplitude gradient itself
is important. Of course, the situation changes, when one considers large diffraction angles, especially diffraction angles ap-
proaching 9Ø0• This situation is seldom in optics, but it is typical for propagation of(electromagnetic) radio-waves along the
Earth surface. In this case, one observes considerable polarization dependence of diffraction field, and one must to use the
Leontovch's approximate boundary conditions and the Fock's <principle of a local field>> at the diffracting edge16. The last
concept lying in the basis of 'the shortened equations 'method' introduced by Leontovich and Fock in 1944-1946.

Once more intriguing historical collision occurs in this context. When the diffusion mechanism of diffraction had been sub-
stantiated by the Leontovich's parabolic equation, Malyuzhinyets'7 tried to prescribe the priority in recognizing of such
mechanism to Th.Young, exploiting the Young's heuristic considerations. But our own survey ofthe historical framework of
the problem shows that the Malyuzhinyets' attempt is not adequate. It has been noted above, that Young did not write the
wave equation (written yet by L.Euler in the 1 8thcentury). Young, moreover, would not use the diffusion equation, while this
equation had been written for the first time by A.Fick only in 1855, a half century later as the Young's diffraction paradigm
was put forward! And even the equation of heat-conductivity (also of a parabolic type) has been written by Fourier in 1822,
when the wave interpretation of diffraction in Fresnel version had been completed and world-recognized. In our opinion,
when Young writes on dif-fusion of radiation, he applies the term 'diffusion' only in generalized (figural) sense, which may
be understood now as 'scat-tering' or 'dispersion' of radiation.

Many years after the classical Rubinowicz's contribution, the Young's interpretation of diffraction revives again simultane-
ously in several world-class research centers'8'19'2'2023. Keller'9 derives the quite original approach of geometrical theory of
wave diffraction, which occurs to be in conceptual agreement with the Young's ideas5. Miyamoto and Wolf show that the
concept of the EDW may be generalized on the case of the incident waves of arbitrary spatial structure. Marchand and
Wolf° show that the same result is obtained proceeding from the Rayleigh-Sommerfeld diffraction integral rather than from
the Kirhhoff's one. It is remarkable that the next paper by Wolfand Marchand21 explains, why the Kirhhoff"s boundary con-
ditions, being inconsistent mathematically and violated in practice, lead nevertheless to the true and experimentally verified
results concerning to the diffraction field in a wave zone. Namely, Wolf and Marchand decompose the EDW into the angular
spectrum of plane-wave components and show that the component of this spectrum propagating along the aperture is just

*
Asymptotic (rather than rigorous) nature of this solution follows from the fact that it cannot be extended with impunity to arbitrary dif-

fraction angles.
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the evanescent (exponentially decaying) wave, non affecting the diffraction field at a wave zone. After the cited papers by
E.Wolf et a!. , it is impossible to say that the Young's diffraction paradigm was to be consigned to oblivion. Due to these
papers, the Young's diffraction paradigm had been completely legalized in optical science. Note here the following essential
generalizations of the Young-Rubinowicz-Wolf concept of diffraction phenomena. Lit and Tremblay24 applied successfully
the EDW theory to the cascaded apertures that was of importance for the theory of laser resonators25'26. Suzuki27 extended
the EDW theory to the systems with arbitrary aperture transmittance function. He shows that when the gradient of an ampli-
tude transmittance is like to the Dirac's delta-function, the exact solution of the diffraction problem is reduced to the one
given by Rubinowicz. Otis28, and Smimov and Strokovsky29 applied this concept to the practically important case of Gaus-
sian incident beams.

There are the main experiments verifying the Young-Rubinowicz's model of diffraction phenomena. Two basic techniques
of dark-field observation are sketched in Fig.5, namely, the Toepler's schlieren technique and the Faucault knife one. A
knife edge, KE, is placed in front of an objective, Ob, at distance exceeding its focal length. Regular image, I, is the real and
inverted image of a knife edge. When, following to Toepler, one blocks the image of quasi-point primary source, P0, with a
small opaque scre-en, BS, then regular image is changed to the double-contour image of the diffracting edge. True image of
the edge is the middle line of zero amplitude resulting from destructive interference of two out-of-phase by 'r components
of the EDW of equal intensity. Two bright fringes decorating this dark image result from prevalence in amplitude of any of
two components of the EDW at non-zero diffraction angles. In contrast, ifthe Faucault knife technique is applied, excluding
both the primary source image and one of two components of the EDW, than one observes non-compensated interferention-
ally single bright image of the diffracting edge. This image (bright fringe) is positioned just the same as the dark (zero-
amplitude) line in the Toepler experiment. Of course, resolution in both cases is dependent on the aperture conditions of the
experiment. Under identical aperture conditions, a half-width of the single bright fringe (by Faucault) is equal to the distance
between the intensity maxima at the double-contour image (by Toepler). To all appearance3'30, such experiments were for the
first time perfonned by Banerji in 1919. In our knowledge, the best demonstration experiment had been performed in laser
era by S.Ganci30. In31, it has been shown interferentionally (see Fig.5) that two bright fringes neighboring the dark image of a
knife edge in Toepler experiment are out-of-phase by ,lr, in agreement with the Rubinowicz's representation of the Kirh-
hoff's diffraction integral.

Figure 5. Sketch of dark-field observation experiments following by Toepler and Faucault: P0 - primary source, KE - knife edge, Ob -

objective, BS - blocking screen, I - image; double-contour image (following Toepler), single-contour image (following Faucault), and
interference testing of a phase structure of the doubly contoured dark-field image.
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Proc. SPIE Vol. 4607 115

Downloaded from SPIE Digital Library on 21 Dec 2010 to 77.47.181.172. Terms of Use:  http://spiedl.org/terms



It is worthwhile to understand now: why the Young-Rubinowicz model of diffraction phenomena did not attract attention of
re-searchers working in holography along many years? In our knowledge, the only reference to the 'edge effects' in hologra-
phy up to the middle of nineties of the 20th century had been made by Gabor in Ref.32 (Section 7). It is really strange, asa
holography is the method essentially based on diffraction phenomena, and as such, it is the unique tool for verification of
alternative concepts of diffraction33. Our answer is the following. Both Gabor and Leith and Upatnieks in their pioneering
studies in holography proceeded from the Kirhhoff's diffraction theory, manifestly referencing to this theory. The milestone
papers by Leith and Upatnieks arose in Journal ofthe Optical Society ofAmerica in 1962, some months after outstanding
publications on diffraction by E.Wolf et al. Explosive success of holography in sixties formed universal impression that ho-
lography per se was the final proof of the principles from which it had been developed. In our opinion, however, this impres-
sion is not incontrovertible. Initial motive led us to the developing of so-called 'Young holography', i.e. holography of the
EDW'3'31'3341, was of pure didactic nature. We tried to find out: who did record the first hologram? Some of the great fore-
runners of Gabor are well-known42: they are Wolike and Bragg. But we looked for the simplest conditions of photographic
recording those providing a holographic effect. The result of our consideration is as the following. The simplest case of a
photographic recording ofspatially non-uniform intensity distribution providing the holographic effect is a common photo-
graphic recording ofa knife-edge diffraction pattern. Thus, the anonymous pioneer of holography lived in the middle of the
l9t century, when both Young and Fresnel died, but photography as the method of recording of light radiation had been
discovered.

It has been shown33 that the photographic recording of a knife-edge diffraction pattern may be considered as (and it is) a
hologram ofthe rim ofthe diffracting device. Holography provides the unique possibility to divide the diffraction field at the
directly illuminated area into two components, namely, the GOW and the EDW's component propagating to the directly
illuminated area. Our initial idea is concisely reproduced below. If, following to Young, one interprets the part of a knife-
edge diffraction pattern within the directly illuminated area as resulted from interference of the GOW and the EDW, then
one may consider the GOW as the reference wave in respect to the EDW. Consequently, one must to expect that the GOW
illuminating a photographic recording of such a diffraction pattern (in the absence of a knife edge) will reconstruct the main
and the conjugate contour images of the obstacle. Such a hologram, if it is possible, will image just the virtual source of the
EDW. For that, the main (virtual) contour image will be observed at the strong background due to the read out wave. But
one can choose the geometrical conditions for hologram recording and reconstruction, when the conjugate image will be
real, i.e. it will be reconstructed behind a hologram33. In this case, one can use a complementary opaque screen at the holo-
gram plane to provide dark-field (in Faucault sense) observation of the conjugate image of the 're-transmitting' edge. This
prediction is obviously supported by an important feature of a knife-edge diffraction pattern at the directly illuminated area:
the coordinate dependence of spatial frequency of diffraction (interference) fringes is p X/2f , where X is the distance
ofthe running point ofthe field from the geometrical shadow boundary, A. is the wave length ofthe incident wave, and f is

the focal length of Fresnel zone pattern, which in the case of a plane incident wave is equal to the distance from the knife
edge to the observation plane. It means that a photographic recording of a knife-edge diffraction pattern is none other than
the one-dimensional (and one-sided) Fresnel zone plate, whose imaging ( holographic) properties are well-known.

Our attempt to verify experimentally this consequence of the Young-Rubinowicz model of diffraction phenomena in holog-
raphy led to prompt success3335. The sense of this result is that the virtual Young's edge retransmitters may be 'portraited'
(imaged), while the Huygens-Fresnel secondary sources are fictitious radiators, which can not be observed in principle33'43.
Detailed description of diverse results obtained in Young holography may be found in Refs.13,3 1,33-41. Here we want to
emphasize only one of these results. Applying the original technique for optical phase conjugation using a static nonlinear
hologram recorded with a standing reference wave447, we self-reversed the EDW to its origin and, in such a manner, formed
the image of the diffracting rim just at the place where the rim is located40'41. Note that in the regime of EDW self-
conjugation using a static nonlinearly recorded hologram, one can realize holographic analogs of both classical (by Toepler
and by Faucault) dark-field observation techniques. All observed by ours results are in excellent qualitative and quantitative
agreement with the predictions derived from the Young-Rubinowicz model of diffraction phenomena. At the same time,
holographic implementations of the conditions of dark-field observation based on balancing of diffraction efficiency of a
hologram at different areas of the recorded diffraction pattern possesses important advantages in comparison with a 'hard'
blocking of dc-term by the use of opaque screens. Namely, holographic techniques naturally provide 'soft' blocking of low-
frequency components of the object wave that leads to suppressing of undesirable diffraction side-lobes into reconstructed
images.
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There is the reason to allocate Young holograms into special hologram type. Following the tradition, the fundamental ho-
logram types (Fresnel hologram, Fraunhofer hologram, Fourier hologram, and, sometimes, focused-image hologram) are
introduced by taking into account the approximation adopted for asymptotic computation of a diffraction integral for the
object wave and reference one at the plane of registration48'49. All mentioned hologram types are introduced on the base of
the Kirhhoff's diffraction integral. In the case of the focused-image hologram, one computes the exposing object field by
taking two sequential integral transforms. Further, proceeding from the alternative approach to description of diffraction
phenomena introduced by Rayleigh, when the elementary waves into the set of which the boundary object field is expanded
are infinite-aperture plane waves rather than spherical ones (as in Huygens-Fresnel-Kirhhofftheory), one can recognize once
more fundamental hologram type, namely, 'Rayleigh hologram' or hologram of evanescent waves. At last, introducing the
Young-type hologram is justified by exploiting of the alternative decomposition of the object wave, namely into the GOW
and the EDW.

Shoucri's interpretation ofcoiztour (dffradllon) integrat°'51. Let us consider here one interesting interpretation of diffrac-
tion phenomena related to the Young-Rubinowicz model, which had been introduced by Shoucri5° in 1969 and reproduced
by him along thirty years51. The consideration performed by Shoucri is as follows.

Shoucri divides the plane where a diffraction aperture at an opaque screen is placed into infinite series of Fresnel zones and
adds together the contributions from all zones at the point of observation of a diffraction field. The contributions from the
beginning in zones located within the aperture are added in a common way, and the contributions from the zones from
m + I to infinity blocked by the screen are subtracted from a whole (undisrupted by the screen) field. The key peculiarity of
this consideration is elimination by assumption the 'shining edge"35 and its influence on the diffracting field from the
analysis. It is obvious, the result obtained is equivalent to the Kirhhoff's one as well as to one derived proceeding from the
Maggi-Rubinowicz contour integral. On this ground, Shoucri asserts that the contour integral does not represent physically
existing wave motion, but it rather provides only a formal description of the resultant effect of 'subtracting' of the contribu-
tions from the blocked Fresnel zones from a whole field. It is remarkable that interpretation of a contour integral in diffrac-
tion theory is advanced by Shoucri along the third of century. Nevertheless, has no any experiment been proposed for its
proofup to now. Let us discuss here such experiment and show that it may be only the 'brain experiment' rather than the real
one. In this respect, the discussed below experiment is similar to the famous 'twins paradox' in the special relativity theory.
So, being formally irreproachable, it nevertheless cannot be directly verified.

The Shoucri's interpretation would be verified in the following way. Let an undisrupted wave of unite amplitude from the
primary source, hereinafter Wave I, to be co-axially superimposed (for example, interferometrically) with the copy of a part
of this wave, hereinafter Wave II. Let the Wave II to be of the same wave front and amplitude as the Wave I, being at the
same time out-of-phase by r with this wave and having sharp discontinuity at its boundary with thejump ofamplitude from
unity to zero. It is clear, perfect interference compensation of a part of Wave I will take place, amplitude gradient will occur
at the boundary 'light-darkness', and amplitude diffusion of the 'cut' Wave I into dark region will begin. Following to
Shoucri's argumentation, one can assume that two identical (in wave front and amplitude) but out-of-phase by it sets of
Fresnel zones (integer or •partial50'51) associated with Wave I and Wave II correspond in this hypothetical experiment to the
region of darkness. In accordance with Shoucri's conclusion, an additional field (Wave II) associated with Fresnel zones of
the 'extinguished' region is the source of diffraction. The result could be equivalent to one realized with blocking of the cor-
responding part of Wave I by a material sharp-edged opaque screen.

Of course, the described 'brain experiment' cannot be performed. To do this, one must, at least, to have a possibility to con-
struct the sharply-edged Wave II with the amplitude gradient like to the Dirac's delta-function. But it is the same as to sup-
pose a possibility of dffractionless propagation ofsharply cut wave. One just reveals the 'vicious circle' in this point: such
a possibility is excluded by diffraction phenomena. The best practical approximation to the desirable conditions of the dis-
cussed experiment consists in the use of material opaque screen at the reference leg of an interferometer to provide the
boundary 'light-darkness'. However, this boundary always turns out to be blurred to a certain extent due to diffraction! Be-
sides, inevitability of the usage of (as though auxiliary) material screen occurs in obvious contradiction with the Shoucri's
interpretation, for which proof this experiment is destined. Namely, inevitability of mtroducing m the wave (or in its part) of
a material screen disturbing homogeneity of the space of wave propagation to obtain the diffraction effect just manifests
physical existence, physical reality of the component of a wave motion with the center of divergence at the edge of a mate-
rial blocking screen.
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It is quite clear now that the Shoucri's interpretation, providing accurate formal description of diffraction phenomena in the
nearest vicinity of the geometrical shadow boundary, does not reveal the true source of diffraction phenomena (amplitude
gradient of the field, and the screen edge as the precondition of this gradient). Besides, the Shoucri's interpretation suffers
from the lack of any definition of an opaque screen. An opaque screen is equal to the superposition of two out-of-phase by
g waves of equal amplitudes only formally43. If only the described 'brain experiment' would be performed, it would be
standing for a classical (non-quantum) effect of light-by-light diffraction without interaction of radiation with a matter. Of
course, such a possibility is quite fantastic. At last, virtual Fresnel zones associated with the blocking screen and considered
by Shoucri as the 'supplier' ofthe energy for developing of diffraction can not be visualized (imaged) and, as such, they are
fictitious secondaiy sources similarly to the Huygens-Fresnes ones.

Insolvency of the Shoucri's interpretation may be also shown by taking into account the well-known fact that the diffraction
field within the geometrical shadow region depends only on the field's magnitude at the diffracting edge, rather than on the
field distribution within an aperture. This fact has been demonstrated for a far-field aperture diffraction of converging
spherical wave31'36 everywhere outside the central diffraction maximum of Fraunhofer pattern, as well as for the case of a
knife-edge diffraction of Gaussian beams29. Namely, if a knife edge is located at the amplitude maximum of a Gaussian
beam, then the diffraction field at the geometrical shadow region turns out to be strictly the same as in the case, when a knife
edge is illuminated by a plane or spherical wave of constant amplitude equal to the amplitude maximum of a Gaussian beam.
Of course, the Cornu's spiral is deformed in the case of Gaussian incident beam, and the Shoucri's computation is modified.
But independence of a diffraction field within the geometrical shadow region on the specified structure of the incident wave
far from the nearest vicinity of the diffracting edge is once more valued argument against physical adequacy of the Shoucri's
interpretation.

3. KHIZHNYAK'S DECOMPOSITION OF THE DIFFRACTION FIELD

When our study'3'31'33'" on holography of an ED(dffraction)W had been completed, we quite unexpectedly clashed with an-
other decomposition of a diffraction field arising, in particular, in a knife-edge diffraction. This approach had been inspired
by Khizh-nyak et al.9"°'5257 using the same acronym as being introduced earlier by us, 'EDW', but whose sense became
quite different from one in the Young-Rubinowicz model of diffraction. The authors of the mentioned approach flatly deny
legitimacy of the diffraction field decomposition following to the Young-Rubinowicz model of diffraction (in which we are
sure owing to our own experimental experience as well as to our knowledge of the conceptual and historical framework of
the problem) ignoring all the mentioned in Section 2 (and many other) evidences in favor of this model, and assert that only
their decomposition provides 'exceptionally fruitfiul approach'54, which gives 'attractive and elegant explanation of Sommer-
feld's solution'10 'new look at the wave composition of a diffraction field'10 'a gracious union ofnumerical precise rigorous
mathematical solution and possibility of deeper circumstantiation of the wave process'52, and 'explanation of true nature of
diffracting wave field'55. Here we explain the essence ofthis approach and discuss its advantages and disadvantages.

The discussed decomposition of a knife-edge diffraction field is performed as follows. The part of Sommerfeld's rigorous
solution of the diffraction problem, associated with the component of the incident wave whose electrical vector is parallel to

sharp straight edge of a half-infinite perfectly conducting screen (E-polarization, see curve usI Fig.2), is formally de-

composed in-to two components9"° shown in Fig.6: (1) an infinitely-extended plane wave bearing a half amplitude of the
plane incident wave, being out-of-phase by .ir with this wave; (2) an infinitely-extended quasi-plane ED(dislocation)W. The
term 'dislocation' is applied here to the wave with infinitely extended line ofzero amplitude, in the spirit ofsingular optics58.
A mean direction of propagation of this wave is the same as one of the incident wave, its amplitude at the geometrical
shadow boundary is zero, and its amplitude oscillations decay at 'wings', so that the ED(dis/ocation)W at its 'wings' ap-
proaches a plane wave. Two parts of the ED(dis/ocation)W symmetrical in respect to the shadow boundary are out-of-phase
by .ir to each other. Both the plane-wave component of the diffraction field and the ED(dislocation)W are assumed to be
'occupying a whole space and insensitive to the presence of the screen"°. Khizhnyak et al. declare that the mentioned de-
composition determines 'real physically existing waves"0 those are the natural eigenmodes ofthe diffraction field52.

Rigorously speaking, the discussed decomposition of a knife-edge diffraction field does not belong to Khizhnyak et al. The
same formal decomposition had been introduced (of course, without singular phraseology) fifty years before by Gabor32 (see
Eqs. (22) to (24) and Figs. 12 and 13). Moreover, similar representation was used for more general case of Gaussian incident
beam diffracted by a circular aperture59. It is unlikely that Khizhnyak et al. did not know the papers32'59. It is moreover stag-

52.57gering that Khizhnyak et al. attribute this decomposition to themselves
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Figure 6 ['°J. Khizhnyak's decomposition of the diffraction field behind a half-infinite opaque screen: 1 - the ED(dis/ocation)W, 2 - the
plane wave, 3 - the resulting diffraction wave.

The authors9"°'5257 do not proceed from the Maxwell's equations, as Sommerfeld does to obtain his rigorous solution"4'5.
They, also, do not write the wave equation, and do not specify the boundary conditions to solve this equation (or, at best53,
specify these conditions following to Kirhhoff'). Instead, they use the ready solution of a diffraction problem in terms of the
Fresnel in tegrals. It is quite obvious from Fig.2 that any transformations of this solution might give only a part of even the
scalar solution. It means that the Khizhnyak's solution of the diffraction problem must to be specified only as the asymptotic
rather than as the rigorous one, as asserted9"°'5257, despite at extremely small diffraction angles such a representation, really,
may provide high numerical accuracy in description of a diffraction field, irrespectively of the assumptions concerning to the
screen's conductivity, radius of curvature of the diffracting rim, and the state of polarization of the incident wave. In our
opinion, even extension of the approach'° on the case of H-polarized incident wave, as it is performed in Ref.56, will not
lead to the experimentally verified results. In this context, it is non superfluous to remind the van de Huist's utterance6° that
Sommerfeld's solution is rigorous (being derived proceeding from the rigorous, though idealized, boundary conditions), but
it is not exact (being no undergoing literal experimental verification due to impossibility to implement perfectly conducting
screen). Actually, various vectorial diffraction theories for real opaque screens give considerably different results, some of
which are in glaring contradiction with Sommerfeld's solution" . One experimental example of this circumstance may be
found in Ref.13.

Nevertheless, the Khizhnyak's decomposition of a diffraction field possesses undoubted aesthetic advantages. Namely:

(i) both wave components shown in Fig.6 are continuous in amplitude, and only the ED(dis/ocation)W has a phase disconti-
nuity at the edge-dislocation plane (coinciding with the shadow boundary). It is important that a phase discontinuity is
not forbidden by the wave considerations: it means simply that a wave phase is changed by r at zero-crossing. As so,
both mentioned components obey the wave equation and 'can exist and propagate in free space sep&ately"°;

(ii) besides, the Khizhnyak's decomposition of a diffraction field arising from a plane-wave diffraction at an opaque half-
plane undergoes an obvious generalization on arbitrarily shaped wave fronts of the incident field. So, an incident beam
(instead of the above mentioned infinitely-extended incident plane wave) is expanded into angular spectrum of plane
waves, and the Khizhnyak's decomposition of the dffractionfleld is applied to the each of these waves that results in a
simple convolution integral. It has been shown, in part, for the case of a half-plane diffraction of Gaussian beams52;

(iii) at last, the wave components figuring in the Khizhnyak's decomposition have convenient formal representation, which
provides reducing of computation time in solving various diffraction problems under paraxial approximation57.

It is well known that the Kirhhoff's boundaiy conditions are inconsistent being in contradiction with the wave concept. So, if the wave
field and its derivative vanish simultaneously at any point, then the wave field vanishes at a whole space. Such conditions provide only
asymptotic solution of the diffraction problem. That's why, the authors'°'53 are compelled to introduce an additional (to shown in Fig.6
plane wave and the ED(dislocation)W) so-called a 'pressed' wave at the geometrical shadow region just behind an opaque screen. Of
course, existence and the predicted structure of the 'pressed' wave have never been proved experimentally.

-s -4 0 4
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The last advantage is obvious only in comparison with computation of two-dimensional (area) diffraction integrals, but it is
unsupported being compared with the computation following the Rubinowicz's representation that also leads to one-
dimensional (contour) diffraction integral"3. Moreover, one can make the next step within the framework of the Young-
Rubinowicz model by applying the stationary phase principle2, and reduce solving of the diffraction problem to summation
over finite set (often extremely limited) of the contributions from so-called critical points within the plane of diffraction de-
vice. The Khizhnyak's decomposition of the diffraction field certainly cedes to this approach. Thus, the last of three men-
tioned advantages ofthe Khizhnyak's decomposition is ephemeral.

Now consider the experimental arguments in favor to the Khizhnyak's decomposition of diffraction field. First of all, the
discussed decomposition cannot be directly realized neither by subtraction of a part of a whole diffraction field using any
dark-field technique nor by phase shift of a part of a whole diffraction field using a phase-contrast technique. The only pos-
sibility proposed to 'isolate' the ED(dis/ocation)W from a whole diffraction field consists in interference superposition of a
knife-edge diffraction field with an additional reference background, for example, in the arrangement of Mach-Zehnder in-
terferometer9"°'5257. For that, the reference wave must to be specially matched with the knife-edge diffraction field: (a) in
wave front, (b) in direction of propagation, (c) in amplitude, (d) in phase. If the reference wave and the wave incident on a
knife edge are of the same wave front and propagation direction at the interferometer output, and the reference wave is of
half amplitude of the incident wave, and both waves are out-of-phase by 'r to each other, then one can observe a dislocation
wave at the interferometer output, see top fragments in Fig.7. The authors9"° interpret this result as 'destructive-interference
subtraction' of the plane-wave component figuring in the Khizhnyak's decomposition from a whole knife-edge diffraction
field. Superimposing an additional titled reference wave with the combined field originated from a superposition of the
knife-edge diffraction field with the interferometrically matched reference wave results in revealing of a phase structure of
the ED(dis/ocation)W. Namely, it proves that the parts of this wave symmetrical in respect to the line of zero amplitude
('edge-dislocation line' coinciding with the geometrical shadow boundary) are out-of-phase by ir. Further, if the reference
leg of an interferometer is blocked, then one can observe conventional knife-edge diffraction pattern, and the use of an addi-
tional titled reference wave reveals the cylindrical wave front of the diffraction field at the geometrical shadow region, see
bottom fragments in Fig.7.

(i U i'
I It I i!:i H •
Lf Iii

Figure 7 [10] Top: a pattern appearing at the interferometer output and its interferogram with additional titled reference wave; bottom: a
pattern appearing at the interferometer output with blocked reference wave and its interferogram with additional titled reference wave.

Of course, the Khizhnyak's interpretation of the experimental results represented in Fig.7 is deprived of any convincing
force. These results have a simple interpretation in terms of classical (non-singular) wave optics. First of all, it is seen from
this figure that spatial frequency of the ED(dislocation)W's amplitude linearly increases as the distance from the geometrical
shadow boundary (shown by a dashed line) increases. From the point of view of the Young-Rubinowicz model, such spatial
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structure of the ED(dislocation)W is naturally explained as the result of interference of the cylindrical ED(dfraction)W with
the center of divergence at the knife edge, and the reference wave specified as described above. This clear interpretation is
supported by observation of spatial evolution of the ED(dislocation)W with increasing of the distance of observation. So, if
one uses a plane reference wave, then the isophotes spread following to the parabolic law; and if one uses a cylindrical refer-
ence wave, then the isophotes spread following to the hyperbolic law (see discussion of Fig.1). That's why, we believe that
Fig.7 (top fragments) shows really something quite different from those asserted by the authors of this experiment. Namely,
theforinal (Gabor-) Khizhnyak 's decomposition ofa knife-edge dffractionfield suggests the diffraction-interference means
to produce the wave with the edge dislocation, rather than shows the means to 'isolate 'such a wave from the knife-edge
dffractionfield, and all thefollowing5257 concerns only with the study ofthis actual subject ofsingular optics, rather than
with the diffraction problem per se. Let us argue the last conclusion.

First of all, to show that the Khizhnyak's decomposition does not determine the natural eigenmodes of a diffraction field, it
is sufficient to modify the referencewave in any way (with unchanged wave incident on a knife edge): in wave front, in di-
rection of propagation, in amplitude, or in phase. For the each of denumerable infinity of such modifications, one can inter-
pret the 'interferentional rest' at the interferometer output as the result of interference subtraction of the whole diffraction
field's wave component, bearing the same amplitude as the specified reference wave being out-of-phase by r with this
wave. Of course, all these situations are physically equal to each other, but, obviously, the ED(dislocation)W does not appear
in most cases. Besides, this circumstance raises to the problem of spatial stability of the ED(dislocation)W. The statement
that the results represented in Fig.7 (top fragments) show 'physically stable field with edge dislocation propagating along the
geometrical shadow boundary'53 is not substantiated neither conceptually nor metrologically.

Further, there are another means to produce the wave with the edge dislocation9'10"3. One of them consists in the use of a
plate with the 71 -phase step, and another consists in the use of 'bi-grating' with a half-period shift of the maxima of an am-
plitude transmittance at the adjacent areas of the grating. These means for producing of a dislocation wave are much more
practicable than the one following from the Khizhnyak's decomposition, as they do not pre-assume a fine interferometrical
adjustment. All results represented in Refs.52-57 would be obtained applying these much more simple techniques.

At last, Khizhnyak et al. , unfortunately, did not avoid once more borrowing on the results of their forerunners (see comments
of Fig.6). The result shown in the right bottom fragment of Fig.7 had been obtained many years ago by the same (inter-
ferometrical) technique and found a firm metrological confirmation8. This important paper is not cited by Khizhnyak et al. In
Fig.8 we reproduce the result8. It is remarkable that this result occurs to be in obvious contradiction with the objections of
the authors'° against the Young's diffraction paradigm. Really, both the interferogram at the right bottom fragment of Fig.7
and Fig.8 evidence that the knife-edge diffraction field within the geometrical shadow region is the cylindrical wave, as pre-
dicted by Young. The question arises: in what way may the plane-wave component and the ED(dislocation)W approaching a
plane wave at wings to form a cylindrical wave front of the resulting diffraction field? This question is not answered by
Khizhnyak et al.
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Figure 8 [8]• Phase in the knife-edge diffraction pattern calculated using Fresnel integral and the Cornu's spiral (a curve) and determined
interferometrically (crosses).
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Another inconsistency between the conclusions made by the authors9"°'5257 proceeding from the Khizhnyak's decomposition
and physical reality concerns to explanation ofthe 'shining edge effect'. One can see from Fig.6 that only amplitude oscilla-
tions of the ED(dislocation)W decay as the distance from the geometrical shadow boundary increases, while the
ED(dislocation)W's amplitude reaches its absolute minimum (zero) just at the geometrical shadow boundary. That's why,
explanation55 of the 'shi-ning edge' as the resultant effect of combined action of the plane-wave component of a knife-edge
diffraction field and the ED(dislocation)W is quite groundless.

4. CONCLUSIONS

The set of evidences in favor of the Young-Rubinowicz model of diffraction phenomena, some of which we discussed in
Section 2, leads to the conclusion that this model has been firmly grounded both theoretically and experimentally. Theory of
the ED(dffraction)W is conceptually and formally connected with other models of diffraction. The parameters of the
ED(dffraction)W (amplitude, phase and polarization angular distributions) predicted by the theory are verified experimen-
tally. Being of asymptotic nature and possessing, as any asymptotic theory, some inconsistencies (in part, discontinuity at the
geometrical shadow boundary), the ED(dffraction)W theory nevertheless leads to the experimentally proved conclusions.
The Young's diffraction paradigm, being refmed mainly by Sommerfeld, Rubinowicz and Wolf, gives a clear explanation of
the diffraction field behavior everywhere outside the nearest vicinity of the geometrical shadow boundary, where the diffu-
sion model of diffraction must to be applied. The initial Young-Sommerfeld-Rubinowicz-Wolf concept dealing with diffrac-
tion at a sharp edge has been successfully generalized for the case diffraction apertures with arbitrary amplitude transmit-
tance. In many cases, the use ofthe Young-Rubinowicz model resulted in a more deep insight into nature and peculiarities of
diffraction phenomena than those provided by the alternative models, as well as in developing of new techniques of infor-
mation processing by means of coherent optics.

The objections against the Young-Rubinowicz model of diffraction, beginning from Fresnel and up to Shoucri and Khizh-
nyak et al., are not persuasive. In some cases these objections are reduced to simple reformulating of the Young's results in
other terms (Shoucri). In other cases (Khizhnyak et al.) one wish to deliver over the desirable asfor the true. Saying this, we
do not wish to deny legitimacy of alternative approaches in explanation of diffraction phenomena. Moreover, there are no
any reasons to give preference to the Young's diffraction paradigm against other ones. So, the Khizhnyak's decomposition
of a diffraction field results in original means for constructing the ED(dislocation)W and provides new feasibilities for inves-
tigation ofthis subject of singular optics.

Thus, let us conclude by the A.France's words: <<There is something divine in any God>>!
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