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Abstract
It is shown that, for an incoherent superposition of the orthogonally polarized laser beams, the
vector singularities of a specific type arise at the transversal cross section of a paraxial
combined beam instead of common singularities, such as amplitude zeros or optical vortices
(inherent in scalar, i.e. homogeneously polarized, fields), and C points, where polarization is
circular, and L lines, along which polarization is linear (inherent in completely coherent vector,
i.e. inhomogeneously polarized fields). There are U lines (closed or closing at infinity) along
which the degree of polarization equals zero and the state of polarization is undetermined, and
isolated P points where the degree of polarization equals unity and the state of polarization is
determined by the non-vanishing component of the combined beam. U surfaces and P lines
correspond to such singularities in three dimensions, by analogy with L surfaces and C lines in
three-dimensional completely coherent vector fields. P lines directly reflect the snake-like
distortions of a wavefront of the singular component of the combined beam. Crossing of the U
line (surface) is accompanied by a step-like change of the state of polarization onto the
orthogonal one. U and P singularities are adequately described in terms of the complex degree
of polarization with the representation at the Stokes space, namely at and inside of the Poincaré
sphere. The conditions of topological stability of U and P singularities are discussed, as well as
the peculiarities of the spatial distribution of the degree of polarization in the closest vicinity to
such singularities. Experimental examples of reconstruction of the combined beam’s vector
skeleton formed by U and P singularities as the extrema of the complex degree of polarization
are given. Comparison with the related investigations is provided.

Keywords: optical singularities, partial polarization, partial coherence, Stokes polarimetry

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The central subject of singular optics of completely coherent
but inhomogeneously polarized fields resulting, for example,
from stationary multiple scattering of laser radiation is C points
(the points where a field is circularly polarized and the azimuth
of polarization is undetermined) and L lines (the lines along
which polarization is linear with smoothly changing azimuth

of polarization and the direction of rotation of the electrical
vector—handedness—is undetermined) at the transversal cross
section of a beam. Snake-like C lines and L surfaces
correspond to such singularities in three dimensions. The set
of C points and L lines obeys well-known sign principles
and forms the vector skeleton of a coherent, inhomogeneously
polarized beam [1–5], namely knowing the characteristics of
the field at C points and L lines, one can predict in a qualitative
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manner the field behavior (in part, changing the state of
polarization) at other areas of the beam. This property of
the polarization singularities follows from their genericity [6],
i.e. structural stability with respect to small perturbations of
the initial conditions or perturbations of a freely propagating
beam. Nongeneric polarization singularities resulting from
coherent mixing of weighed orthogonally polarized Laguerre–
Gaussian (LG) modes with different radial indices have also
been elaborated [7]. The universal theoretical and experimental
approach for the investigation of vector singularities is based
on determining the Stokes parameters as a function of spatial
coordinates at the analyzed transversal cross section of a beam,
followed by determining the spatial distributions of the azimuth
of polarization and the angle of ellipticity and identification of
singular elements of a field.

A new problem arises in the case of incoherent mixing of
orthogonally polarized beams, at least one of which possesses
phase singularities (optical vortices [8]), i.e. the points at the
transversal cross section of a beam where the field amplitude
vanishes and its phase is undetermined. Passing such points
the phase of a field is step-like changed by π . For incoherent
coaxial mixing of such a beam with the orthogonally polarized
plane wave (or with another orthogonally polarized vortex
beam) the usual singularities, such as optical vortices as well
as C points and L lines, are absent in the combined beam.
It follows from the fact that optical singularities considered
within the framework of different models of optical phenomena
are fundamentally different. In paper [9] this circumstance is
illustrated, for example, for the sequence: caustic singularities
of geometrical optics–phase singularities (optical vortices) of
scalar wave optics–polarization singularities of vector singular
optics–quantum vacuum of quantum optics. For a transition at
a higher level of description of a field the singularities present
at lower levels disappear, and new singularities arise. For
that, there is no direct interconnection between singularities
of different kinds which would provide a transformation of
some kind of singularity into some other one by changing
one experimental parameter. A significant example of this
statement is the phase singularities of spatial correlation
functions and the complex degree of coherence at partially
coherent scalar (homogeneously polarized) light fields where
common phase singularities of the complex amplitude of a field
are absent [10–13].

A less investigated case is when a field is partially
coherent and, at the same time, inhomogeneously polarized.
Some examples of such fields were elaborated on in the
papers [14, 15]. It has been shown in [14] that the state
of polarization of a not strictly monochromatic field is
described by Lissajous figures rather than by the conventional
polarization ellipse. The study [15] is devoted to interpretation
of the distribution of the states of (partial) polarization of clear-
sky daylight from the singular optics point of view. It is shown,
in part, that the points with zero degree of polarization and
undetermined state of polarization exist in the ‘sea’ of linear
polarizations with changing azimuth.

It has been recently shown [16, 17] that, at the transversal
cross section of the combined beams resulting from incoherent
coaxial superposition of orthogonally polarized singular laser

beams, instead of C points and L lines, the vector singularities
of another type arise, namely, U (unpolarized) contours
(closed or closing at infinity), along which the degree of
polarization equals zero and the state of polarization is
undetermined, and P (completely polarized) points where the
degree of polarization reaches its maximal (unity) magnitude
and the state of polarization corresponds to the non-vanishing
component of the combined beam. U surfaces and P lines
correspond to such singularities in three dimensions, like L
surfaces and C lines in three-dimensional completely coherent
vector fields. Moreover, P lines directly reflect so-called
snake-like distortions of a wavefront [18] corresponding to
optical vortices. In this paper we continue to investigate the
properties of U and P singularities.

This paper is organized as follows. Following the
approach developed in paper [17], in section 2 we build
the complex parameter, namely the complex degree of
polarization, which is used in section 3 for representation
of U and P singularities at the Stokes space and discuss
the structural stability of such singularities in real three-
dimensional space. In section 4 peculiarities of the distribution
of the degree of polarization in the vicinity of U and P
singularities are considered. The experimental technique and
the results on the reconstruction of such singularities and
the vector skeleton of the combined beams are presented in
section 5. Section 6 summarizes our main new findings.

2. Complex degree of polarization

Conventionally, the degree of polarization of light is defined as
the real, non-negative value [19–23]:

P = Ip

Ip + Iu
; 0 � P � 1, (1)

where Ip, Iu—intensities of completely polarized and com-
pletely unpolarized components of a beam, respectively. Note
that there is no polarization device providing the decomposi-
tion of a beam into such components. Alternatively, the polar-
ization degree can be represented through the invariants (deter-
minant and spur) of Wolf’s coherency matrix: {J} [22]:

P =
√

1 − 4 det{J}/Sp2J, (2)

(the completely polarized limit corresponds to det{J} = 0,
while the completely unpolarized limit corresponds to Jxx =
Jyy and Jxy = Jyx = 0). Though the non-diagonal elements
of the coherency matrix are not directly measured, they are
connected with the Stokes parameters which can be determined
from measurements of six intensities: S0 = I0 + I90, S1 =
I0 − I90, S2 = I+45 − I−45 and S3 = Ir − Il. The degree
of polarization can also be defined in the terms of the Stokes
parameters:

P =
√

s2
1 + s2

2 + s2
3 , (3)

where si = Si/S0, (i = 1, 2, 3)—the normalized second,
third and fourth Stokes parameters. At inhomogeneously
polarized fields all Stokes parameters are functions of the
spatial coordinates. So, the definition (3), in contrast with (1)

2



J. Opt. A: Pure Appl. Opt. 11 (2009) 094010 A A Chernyshov et al

and (2), assigns the experimental procedure for determining
the degree of polarization for light consisting of arbitrarily
polarized components. It is important in this study that
the second, third and fourth Stokes parameters relate to the
representation of a polarized light at the Poincaré sphere, being
simply the Cartesian coordinates of the point imaging some
state of polarization.

The Stokes parameters can be both positive and negative.
So, the normalized second, third and fourth Stokes parameters
of the orthogonally polarized fields are related as {s1, s2, s3}
and {−s1,−s2,−s3}. Thus, the Stokes parameters contain
information on the specific state of polarization of a field: the
azimuth of polarization, α = 0.5 tan−1(s2/s1) (−π/2 � α <

π/2), and the ellipticity angle, β = 0.5 sin−1 s3 (−π/4 � β �
π/4). However, this information is lost when one defines the
degree of polarization of a beam using the quadratic values (3).
Here we show that the concept of the degree of polarization
can be generalized in such a manner that the new definition
will contain complete information both on the degree (P) and
the state (α, β) of polarization.

Let us use the concepts developed in [23] to introduce
the complex degree of polarization (CDP). In the cases when
the amplitude and vibrational (initial) phase of a beam are
not relevant and only the state of polarization is of interest,
the beam can be described by the so-called circular complex
polarization variable:

χr,l = Er/El = (|Er|/|El|) exp(δr − δl), (4)

where Er and El—the components of the circular Jones vector.
The variable χr,l is the function of two real arguments, namely
the amplitude ratio of right-hand and left-hand circularly
polarized components of a beam, |Er|/|El|, and the phase
difference between them, (δr − δl). The use of the circular
complex polarization variable instead of the Cartesian one
derived from the conventional Cartesian Jones vector is
preferable while the decomposition of a beam into circular
components is unambiguous, i.e. it is not dependent on the
choice of the coordinate frame (azimuth). This variable can
be rewritten in terms of the azimuth of polarization and the
ellipticity angle:

χr,l = tan(β + π/4) exp(−i2α). (5)

The circular polarization variable uniquely determines the state
of polarization of completely (elliptically, in the general case)
polarized beam at the circular complex plane [23] and, through
stereographic projection, at the Poincaré sphere.

Let us introduce the CDP by the definition

P = PN χr,l, (6)

where N = |χr,l|−1 = |El|/|Er| is the normalizing factor
matching the dimensions of the infinite circular complex plane
and the Poincaré sphere of unit radius. One can put in
the correspondence to the CDP the polarization vector at
the Stokes space, s = s1i + s2j + s3k (|s| = P), as
is shown in figure 1. It is remarkable that the use of the
Stokes space (within the Poincaré sphere) provides imaging

Figure 1. Representation of completely and partially polarized
beams at the Stokes space: the points at the Poincaré sphere image
completely polarized field (P singularities of the combined beams);
points inside the sphere—partially polarized fields; the origin of
coordinates—completely unpolarized field. scp and spp are the
polarization vectors of completely polarized (P = 1) and partially
polarized (P = 0.64) fields, respectively. Transition from spp to −spp

goes on through the U singularity.

not only completely polarized beams (at the sphere, |s| = 1),
which correspond to ‘pure’ states of a field in the sense of
quantum optics and statistical electrodynamics [19, 21], but
also partially polarized beams (inside the sphere, |s| < 1),
which correspond to ‘mixed’ states of a field; the center of
the Poincaré sphere, |s| = 0, corresponds to the zero degree
of polarization: s1 = s2 = s3 = 0, see figure 1. Points outside
the sphere do not represent any state of polarization. The CDP
defined in such a way comprehensively characterizes both the
state and the conventional degree of polarization, for −1 �
P � 1, |P| = P , as will be illustrated in section 3. Note
that, as introduced by us. the CDP differs from the complex
degree of mutual polarization (CDMP) [24], that is two-point
characteristics of an inhomogeneously polarized field.

3. Representation of U and P singularities at the
Stokes space

Let us apply the concept of the CDP for elaborating the case
of incoherent coaxial mixing of two orthogonally polarized
beams, at least one of which is inhomogeneous in intensity
at the transversal cross section, and mean intensities are
commensurable. The paraxial (beam-like) approximation is
assumed hereinafter. The following consideration is quite
general, being well founded for arbitrary combinations of the
orthogonally polarized partial beams, irrespective of the type
of polarization (linear, circular or elliptical).

Along the lines at the transversal cross section of the
combined beam where intensities of partial orthogonally
polarized beams are equal, the real degree of polarization (3)
is zero and the state of polarization is undetermined (U
singularities, the center of the Poincaré sphere). Crossing such
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lines at the transversal cross section of the beam (or associated
surfaces at the three-dimensional field) is accompanied with a
step-like change of the state of polarization onto the orthogonal
one. It corresponds to the change of the direction of the
polarization vector at the Stokes space onto the opposite one,
see figure 1, as follows from the rule of measurement of the
angles (2α, 2β) at this space. Moving on the transversal
cross section of the combined beam corresponds to walking
of the imaging point at the Stokes space along the diameter of
the Poincaré sphere that connects two orthogonal polarization
states, rather than walking at the sphere, as in the case of
coherent vector singular optics.

Note that, in the case when two constituting orthogonally
polarized beams are partially coherent, U singularities do not
appear. At the lines where the intensities of these beams are
equal the field occurs to be partially polarized, 0 < P < 1.
Crossing of such lines corresponds to moving of the imaging
point at the Stokes space along some complex trajectory
inside the Poincaré sphere, which is determined by both the
degree of mutual coherence and the phase difference of the
partial beams, rather than along the diameter of the Poincaré
sphere, avoiding the center of the sphere (U singularity). As
mutual coherence of the partial beams increases, this trajectory
approaches the sphere which corresponds to increasing the
degree of polarization of the combined beam.

It must be emphasized that the point-like U singularities
at the transversal cross section of a beam of the considered
type are not topologically stable. This is one of the important
differences between U singularities considered here and the
points with zero degree of polarization discussed in paper [15].
So, for the changing intensity of any partial beam by an
infinitely small value, I → I ± δ I , U points annihilate or
degenerate into closed U contours. This statement is illustrated
in figure 2 for the example of incoherent coaxial mixing of the
mode LG11 with a plane wave whose intensity (approximately)
equals the intensity of the side-lobe maximum of the LG11
mode. Only U contours at the slopes of the first maximum of
the LG11 mode are stable. Really, small changes of the LG
mode-to-reference intensity ratio (far from the phase transition
threshold, when the intensity of a reference wave exceeds the
peak intensity of the LG11 mode) results only in changing the
size of U contours. As a consequence, the seeming detection
of point-like U singularities must be considered as the result
of limited accuracy of an experiment. The same is true for
crossings of two U contours [17]. Note, such properties
are quite analogous to the topological properties of L lines
into coherent inhomogeneously polarized fields with vector
singularities [25].

If one of the incoherently mixed orthogonally polarized
beams contains optical vortices, then the field at these points
is completely polarized, with the state of polarization of the
non-vanishing component of the combined beam. Such points
of a beam are imaged at the Poincaré sphere and correspond
to P singularities. It has been shown [17] that changing
the intensity ratio of the partial beams results in changing
sizes, form and number of the U contours up to the complete
disappearance of them when the intensity of the non-singular
component exceeds the maximal peak intensity of the singular
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Figure 2. U singularities at incoherent superposition of orthogonally
elliptically polarized LG11 mode (solid line) and plane wave (dashed
line). Singularities U1 and U2 far from the peak intensity are
structurally stable, while singularity U3 is not stable, being strongly
dependent on the intensity ratio of the partial beams.

one. At the same time, the number and positions of P points
are unchanged. P points, in contrast to U contours, also exist
in the case of partial coherence of constituting beams.

At last, if both partial beams contain optical vortices (as
in the case of two orthogonally polarized speckle fields), then
the set of U singularities is added by two sets of P points of
opposite signs corresponding to the orthogonal states of the
polarization of partial beams. Such P points are imaged by the
ends of the diameter of the Poincaré sphere. In this case, the
real degree of polarization for each set of P points equals unity,
and P differ in signs.

Let us emphasize once more that the above-mentioned is
true not only for orthogonally linearly polarized beams but
also for pairs of orthogonally polarized beams belonging to
arbitrary type of polarization, including circular and elliptical.

Both the real degree of polarization and the azimuth of
polarization and the ellipticity angle are represented in terms
of the Stokes parameters. Besides, the same values as for
determining the fourth Stokes parameter are sufficient for
determining the normalizing factor N in equation (6). As a
result, the most general definition of the CDP for orthogonally
elliptically polarized partial beams can be written in the form

P =
√

s2
1 + s2

2 + s2
3 · √

Il/Ir

× [tan(0.5 sin−1 s3 + π/4) exp(−i tan−1 s2/s1)]. (7)

In partial cases of linearly or circularly polarized partial beams
this general definition is simplified. So, for the case of
circularly polarized components (s1 = s2 = 0) equation (7)
is rewritten in the form

P = |s3| · √Il/Ir · [tan(0.5 sin−1 s3 + π/4)], (8.1)

while for the case of linearly polarized components (s3 = 0)
one obtains

P =
√

s2
1 + s2

2 · √
Il/Ir · [exp(−i tan−1 s2/s1)]. (8.2)
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So, for example, when α = π/12, β = 0, P = 0.7
and N = |El|/|Er| = 1 (sign of linear polarization),
equation (8.2) takes the form: P = 0.7 exp(−i 0.5235), so
that the phase of the CDP is simply the doubled azimuth of the
polarization of a beam.

Thus, two-dimensional Stokes polarimetric analysis of
the beams combined from mutually incoherent orthogonally
polarized components and finding out the extrema of the CDP
is an adequate technique for determining the positions of U
and P singularities and reconstruction of the vector skeletons
of such beams.

4. Distribution of the degree of polarization in the
vicinities of U and P singularities in real space

Each optical singularity can be considered as some local
structure with point or linear core with undetermined (singular)
magnitudes of some parameter for the transition of a smoothly
changing control parameter of the system through the threshold
value. Such parameters are different for different types
of singularities. As was mentioned above, the azimuth of
polarization is singular and the angle of ellipticity is the
control parameter at the C point at a completely coherent
inhomogeneously polarized field. In contrast, handedness
is undetermined, while the azimuth of polarization is the
smoothly changing control parameter at the L line. At
the areas between C points and L lines the state of
polarization smoothly changes when the degree of polarization
is unity.

The case considered by us is essentially different. U
singularities separate the areas with constant (orthogonal)
states of polarization, namely the magnitudes of ellipsometric
parameters α and β; only the degree of polarization
changes from point to point. This case differs from the
one considered in [15], where both the degree and the
state (azimuth) of linear polarization change from point to
point.

Let us emphasize the important peculiarity of the
distribution of the degree of polarization in the vicinity of U
and P singularities, which is also shared by other kinds of
singularities. The typical conical structure of the vicinity of
amplitude zeros for several examples is presented in figure 3.
The conical graph of an amplitude of common harmonic
distribution (figure 3(a)) at amplitude zero is undifferentiable;
undifferentiability disappears in the corresponding spatial
intensity distribution. The same is observed for amplitude
and intensity distributions of a mode LG01 (figure 3(b)).
Passing from the complex degree of coherence to its modulo
(figure 3(c)) results in a peg-shaped vicinity of the phase
singularity of this value [11]. One can see from figure 3(d) that
the same takes place when one passes from the complex degree
of polarization P to the real value P . The conical structure of
the distribution of the degree of polarization (in contrast to the
field intensity distribution) takes pace also in the vicinities of
P points.

The conical structure of the distribution of the degree
of polarization near U and P singularities enables us to
use the reference wave incoherent and orthogonally polarized

Figure 3. Conical vicinity of optical singularities for the modulo of
complex amplitude of a harmonic signal (a), for the LG01 mode (b),
for the modulo of the complex degree of coherence of the scalar
combined beam (c) and for the degree of polarization (d). At left
branches of the fragments (c) and (d) dashed and solid curves
coincide.

with respect to the object wave with optical vortices for
determining the vortex positions. This is an alternative to
the conventional interference technique [18] whose spatial
resolution is not high, being determined by the period of
interference fringes. The polarimetric technique provides
much higher spatial resolution, which is of importance for
diagnostics of closely positioned vortices and differentiation
of them from the vortices with multiple topological charges. In
fact, the cone generatrix serves as the ‘pointer’ of singularities
of the considered kind. For that, even accounting for
optical noise, noise of detecting and computer processing of
experimental data, one can expect spatial resolution at the level
of dozens of micrometers (for typical linear sizes of pixels of a
CCD camera: 4–5 μm).

The use of the orthogonally polarized reference beam
for determining the positions of optical vortices at scalar
statistical fields was proposed earlier [26] and has recently
been implemented [27]. In [27], however, the reference
and object waves were coherently mixed and the Stokes
polarimetry was applied for determining the phase difference
between the orthogonally linearly polarized components of the
elliptically polarized combined beam, from which the positions
of optical vortices can be determined. The use of a reference
wave mutually incoherent with the singular one, providing the
same spatial resolution, does not presume adjusting an optical
arrangement with interferometric accuracy and is not sensitive
to fluctuations of a phase difference of two beams, in part, due
to vibrations.
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Figure 4. Experimental arrangement: L—laser; λ/2 and λ/4—half-wave and quarter-wave plates, respectively; BS1, BS2—beamsplitters;
P1, P2—polarizers; M1, M2—mirrors; D—diffusers; A—linear analyzer; CCD—CCD camera; PC—personal computer. Action of a
half-wave plate and a quarter-wave plate at the input and output of the interferometer, respectively, is shown in insets.

5. Experimental determining the positions of U and
P singularities and reconstruction of vector skeleton
of the combined beams

The experimental arrangement for determination of the
positions of U and P singularities and reconstruction of
the vector skeleton of partially coherent inhomogeneously
polarized combined beams is shown in figure 4. The beam
of the He–Ne laser is divided into two partial beams in the
interferometer. One sets the path delay at the lower leg of
an interferometer considerably exceeding (in our experiments,
approximately by three times) the coherence length of the laser
used.

Two samples of ground glass placed at the legs of
the interferometer generate scalar fields supporting optical
vortices. The parameters of surface roughness of the samples
provide complete destruction of the regular components at the
scattered radiation and formation of the developed speckle
fields. In the experiment demonstrated below, we use samples
with approximately equal sizes, which leads to the equal mean
size of speckles in two partial beams, and sets the ratio of
average intensities of the two beams close to unity.

A half-wave plate at the interferometer input serves for
fine control of the intensity ratio at the legs with the constant
resulting intensity of radiation at the interferometer output.
Polarizers at the legs of the interferometer set the orthogonal
states of linear polarization (horizontal and vertical). A
quarter-wave plate at the interferometer output, depending on
its orientation, transforms polarizations of the mixed beams
into orthogonal elliptical or circular ones, see figure 4. Note
that any phase plate, not only a quarter-wave one, acts
similarly: depending on the orientation it changes the states of
polarization of two beams (generally, to elliptical type) without
violating their orthogonality. Of course, only using a quarter-
wave plate provides implementation of the pair of orthogonal
circular polarizations. So, two quarter-wave plates at the legs
of an interferometer, as is used conventionally, may be replaced
by a single plate at the output, which automatically (without
the necessity of the fine adjustment of the two plates inside
the interferometer) provides arbitrary pairs of orthogonally
polarized beams. Another important advantage of such placing

of a quarter-wave plate is that the distortions of the state of
polarization of a beam at the lower leg of an interferometer
due to the difference of the Fresnel reflection coefficients for
p- and s-components for mirrors and a beamsplitter, which may
result in non-orthogonality of two beams at the interferometer
output, are excluded. In the experiment demonstrated below
the angle between the fast axis of a quarter-wave plane and
the azimuth of polarization of the horizontally polarized beam
was 15◦. For that, this beam takes the following ellipsometric
parameters: α = β = 15◦; the normalized second, third and
fourth Stokes parameters are {3/4; √

3/4; 1/2}. The vertically
polarized beam is transformed into an elliptically polarized
one with the following parameters: α = β = −75◦, and
the normalized second, third and fourth Stokes parameters are
{−3/4; −√

3/4; −1/2}. A quarter-wave plate and a linear
analyzer in front of the CCD camera matched with the personal
computer serve for registration of the coordinate intensity
distributions needed for determining the Stokes parameters and
the CDP.

The typical result of reconstruction of U and P
singularities is shown in figure 5. The areas with different
colors at the right fragment correspond to the orthogonal
states of polarization separated by U contours; two sets of P
points of opposite signs are depicted by red and blue asterisks.
In contrast with [17], where P points arise for incoherent
superposition of the speckle field with a plane wave only at
one set of areas corresponding to the state of polarization of
the reference wave, here one identifies P points at each set
of areas. As was expected, squares of red and blue areas are
approximately equal due to equal scales of speckle patterns. It
was observed that, similarly to the model of combined beams
investigated in [17], namely LG mode with the orthogonally
polarized plane reference wave, changing the intensity ratio of
the partial beams leads to changing the form and sizes of the
U contours, as well as changing the square ratio of the areas
corresponding to the predominance of one of the orthogonal
states of polarization. However, the positions of P points
remain unchanged, being determined by the positions of the
component vortices.

The three-dimensional spatial distribution of the CDP
reconstructed from the experimental data is shown in figure 6,
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Figure 5. Fragments of mutually incoherent, orthogonally polarized speckle fields and the combined beam; experimentally reconstructed U
contours separating the areas with the orthogonal states of polarization depicted by different colors, and P points of the opposite signs
depicted by asterisks (right fragment) form the vector skeleton of the combined beam.

Figure 6. Three-dimensional spatial distribution of the complex
degree of polarization P at the transversal cross section of the
combined beam reconstructed from experimental data.

where one clearly identifies P singularities of opposite signs
(plus one at the vertical axis, upwards, and minus one,
downwards) with respect to a mean line (zero, U singularities)
with characteristic conical vicinities.

One can get information about the distribution of the
complex degree of polarization from this figure but not about
the specific state of polarization. Information about the state
of polarization is obtained from measured Stokes parameters.
The only conclusion about the state of polarization that can be
obtained from figure 6 is that above and below zero (at vertical
axis) polarization states are orthogonal to each other.

6. Conclusions

Incoherent superposition of orthogonally polarized laser
beams, at least one of which contains optical vortices, results in
a partially spatially coherent and partially polarized combined
beam. The degree of polarization is the function of spatial
coordinates. Only two orthogonal states of polarization take
place at the transversal cross section of the beam, and the
areas with such states of polarization are separated by U
singularities, i.e. the lines at which the degree of polarization
equals zero. Crossing U lines is accompanied by a step-
like change of the sign of the CDP (at the Stokes space)

and, respectively, by a step-like change of the state of
polarization into an orthogonal one. At points where one
of the orthogonally polarized components undergoes phase
singularity, the degree of polarization reaches a magnitude
of unity (P singularity), and the state of polarization is
determined by the non-vanishing component of the combined
beam. U surfaces and P lines correspond to such singularities
in three-dimensional space.

Two-dimensional Stokes polarimetric analysis of the com-
bined beams of this kind provides experimental determination
of the positions of U lines and P points and, in such a way,
reconstruction of the vector skeleton of the beam. The dis-
tribution of the degree of polarization has a specific conical
structure in the vicinity of the extrema of this value. Revealing
such a structure, in part in the vicinities of P points, enables
us to determine the positions of optical vortices at scalar (ho-
mogeneously polarized) fields using coaxial, mutually incoher-
ent and orthogonally polarized reference waves instead of the
conventional off-axis or on-axis interference technique or the
technique based on the use of a mutually coherent orthogonally
polarized reference wave.
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